Изменения

Перейти к: навигация, поиск

Изоморфизмы упорядоченных множеств

68 байт добавлено, 18:03, 28 декабря 2016
м
Нет описания правки
<br>Более формально, <tex> \exists </tex> биекция <tex> f:A \rightarrow B : \forall \, a_1,a_2 \in A : a_1 \leqslant a_2 \Leftrightarrow f(a_1)\leqslant f(a_1)</tex>
}}
== Изоморфизм конечных множеств ==
{{Теорема
|statement=Конечные линейно упорядоченные множества из одинакового числа элементов изоморфны.
|proof=Конечное линейно упорядоченное множество всегда имеет наименьший элемент. Возьмём любой элемент <tex>x_1</tex>. Если он не наименьший, возьмём любой меньший него <tex>x_2</tex>. Если и он не наименьший, ещё меньший — и так далее. Получим убывающую последовательность <tex> x_1 > x_2 > \dots </tex> , которая рано или поздно должна оборваться, т.к. множество конечное. Присвоим наименьшему элементу номер 1. Из оставшихся снова выберем наименьший элемент и присвоим ему номер 2. Будем повторять эту операцию, пока в множестве не останется непомеченных элементов. Таким образом, мы доказали, что любое множество из <tex> n </tex> элементов изоморфно множеству <tex> \{ 1,2,\dots,n \} </tex>
}}
 
== ==
37
правок

Навигация