Изменения
→Уникальность остовного дерева
<h4>Алгоритм решения</h4>
Построим минимальное остовное дерево используя [[алгоритм Краскала]].
Рассмотрим рёбра вне остова в любом порядке. Очередное обозначим <tex>e = (u, v)</tex> вне остова в любом порядке. Рассмотрим максимальное ребро на пути <tex>u</tex> и <tex>v</tex> внутри остова:*Если его вес совпадает с весом ребра, то при добавлении ребра в остов, мы получим остов с циклом на котором несколько рёбер имеют одинаковый вес, значит мы можем удалить любое из них и остовное дерево будет всё ещё минимальным, это нарушает уникальность дерева. На этом алгоритм завершается и по критерию Тарьяна мы можем сказать, что в графе можно построить несколько остовных деревьев.
*Если его вес больше ребра, то заменив ребро мы получим остов с большим весом, этот случай не влияет на уникальность.
*Его вес не может быть меньше ребра из остова, иначе мы смогли бы построить минимальное остовное дерево с меньшим весом.
<h4>Асимптотика</h4>
Построение минимального остовного дерева работает за <tex>O(N \log N)</tex>, нахождение максимального ребра за <tex>O(\log N)</tex>, максимальное количество рёбер вне остова не больше <tex>N</tex>, каждое ребро проверяется за <tex>O(\log N)</tex>. Построение LCA и дополнительного массива heavy-light декомпозиции работает за <tex>O(N \log N)</tex>, остов мы построим один раз, LCA heavy-light декомпозицию тоже один раз, каждое ребро мы не больше одного раза проверим на замену, сложность алгоритма <tex>O(N \log N)</tex>.
== См.также ==