Изменения

Перейти к: навигация, поиск

Convex hull trick

60 байт добавлено, 20:16, 18 января 2017
Альтернативный подход
|id=th12392.
|statement=Если есть <tex>3</tex> вектора <tex>a, b, c</tex>, таких что <tex>|[a-b, b-c]| < 0</tex> то либо <math>(a, u) < (b, u)</math>, либо <math>(c, u) < (b, u)</math>, где вектор <math>u = (1; k)</math>.
|proof=По условию теоремы известно, что <tex>|[a-b, b-c]| < 0 \Leftrightarrow (a_{x} - b_{x})\cdot(b_{y} - c_{y}) < (a_{y} - b_{y}) \cdot (b_{x} - c_{x})</tex> (*). Предположим (от противного), что <tex>(b, u) < (a, u) \Leftrightarrow b_{x} + k \cdot b_{y} < c_{x} + k \cdot c_{y} \Leftrightarrow (b_{x} - c_{x}) < k \cdot (c_{y} - b_{y})</tex> и <tex>(b, u) < (c, u) \Leftrightarrow b_{x} + k \cdot b_{y} < a_{x} + k \cdot a_{y} \Leftrightarrow (a_{x} - b_{x}) > k \cdot (b_{y} - a_{y})</tex>.
Подставим эти неравенства в (*). Получим цепочку неравенств : <tex>k \cdot (a_{y} - b_{y})</tex><tex> \cdot (c_{y} - b_{y}) = k</tex><tex> \cdot (b_{y} - a_{y}) \cdot </tex><tex>(b_{y} - c_{y})</tex> <tex> < (a_{x} - b_{x})</tex><tex> \cdot (b_{y} - c_{y})</tex><tex> < (a_{y} - b_{y}) \cdot </tex><tex>(b_{x} - c_{x})</tex> <tex>< k \cdot (a_{y} - b_{y})</tex><tex> \cdot (c_{y} - b_{y})</tex>. Получили противоречие : <tex>k \cdot (a_{y} - b_{y}) \cdot (c_{y} - b_{y}) < k \cdot (a_{y} - b_{y}) \cdot (c_{y} - b_{y})</tex>. Значит предположение неверно, чтд.
Анонимный участник

Навигация