Изменения
Нет описания правки
# Верно ли, что для двудольного графа значение $\alpha(G)$ равно размеру максимальной доли?
# Докажите, что $G$ двудольный тогда и только тогда, когда для любого $H$ - подграфа $G$ выполнено $\alpha(H) \ge |VH|/2$ ($VH$ - множество вершин графа $H$).
# Докажите, что если в дереве расстояние между двумя любыми листьями четно, то в нем существует единственное максимальное по включению независимое множество. Верно ли обратное?
# Зафиксируем $n$ и $k$. Рассмотрим граф, удовлетворяющий следующим условиям: (1) граф $G$ содержит $n$ вершин; (2) $\alpha(G) \le k$. Среди таких графов рассмотрим граф с минимальным числом ребер. Этот граф называется граф Турана. Докажите, что в графе Турана любые две смежные вершины имеют равную степень.
# Степень любых двух несмежных вершин в графе Турана отличается не более чем на $1$.