Изменения
Нет описания правки
# Будем называть предматроидом пару $\langle X, I \rangle$, для которой выполнены аксимомы нетривиальности ($\varnothing \in I$) и наследования независимости ($A \subset B$, $B \in I$, тогда $A \in I$). Пусть в предматроиде для любой весовой функции верно работает жадный алгоритм Радо-Эдмондса. Докажите, что такой предматроид является матроидом.
# Пусть $M$ - предматроид. Как и в матроиде будем называть базой множества максимальное подмножество из $I$. Докажите, что если для каждого множества $A$ все его базы равномощны, то $M$ - матроид.
# Какие универсальные матроиды являются матричнымиДля каких универсальных матроидов существует изоморфный ему матричный матроид?
# Докажите, что матроид Вамоса не является представимым ни над каким полем.
</wikitex>