Изменения

Перейти к: навигация, поиск

Дискретная случайная величина

982 байта добавлено, 23:25, 9 марта 2018
Нет описания правки
#Аналогичное решение имеет функция распределения числа выпавших орлов при броске монеты, если шанс выпадения орла {{---}} <tex>p</tex>.
#Найдем функцию распределения числа очков, выпавших при бросании игральной кости. Пусть у нас есть вероятности выпадения чисел <tex>1 \ldots 6</tex> соответственно равны <tex>p_{1} \ldots p_{6}</tex>. Для <tex>k \leqslant 1 ~ F(k) = 0</tex>, так как не может выпасть цифра меньше <tex>1</tex>. Для <tex>k > 1 ~ F(k) = \sum\limits_{i = 1}^{\lceil k \rceil - 1}p_{i}</tex>
 
В отличие от дискретной случайной величины, непрерывная случайная величина может принять любое действительное значение из некоторого промежутка ненулевой длины, что делает невозможным её представление в виде таблицы или перечисления состояний. Поэтому ее часто явно задают через функцию распределения, например <tex>
F(x) = \begin{cases}
0, & x < 0 \\
\dfrac{x^{2}}{9}, & 0 \leqslant x \leqslant 3\\
1, & x > 3
\end{cases}</tex>
==Функция плотности распределения вероятностей==
*Плотность вероятности определена почти всюду.
:Иными словами, множество точек, для которых она не определена, имеет меру ноль.
 
Для примера выше <tex>
f(x)=F'(x) = \begin{cases}
(0)', & x < 0 \\
\left(\dfrac{x^{2}}{9} \right)', & 0 \leqslant x \leqslant 3\\
(1)', & x > 3
\end{cases} =
\begin{cases}
0, & x < 0 \\
\dfrac{2x}{9}, & 0 \leqslant x \leqslant 3\\
1, & x > 3
\end{cases}
</tex>
Для дискретной случайной величины '''не''' существует функции плотности распределения вероятностей, так как такая случайная величина не является абсолютно непрерывной функцией.
286
правок

Навигация