Изменения
Нет описания правки
# Пусть задано два списка $A$ и $B$. Докажите, что $\overline{L_A} \cup \overline{L_B}$ является регулярным тогда и только тогда, когда он совпадает с $\Sigma'^*$. Следовательно проблема проверки того, что КС-грамматика порождает регулярный язык, неразрешима.
# Докажите, что проблема проверки того, что дополнение языка заданной КС-грамматики является КС-языком, неразрешима.
# Рассмотрим абстрактный вычислитель "автомат с очередью" - по аналогии с автоматом с магазинной памятью, но вместо стека очередь. На переходе автомат извлекает первый символ из головы очереди, смотрит очередной символ на ленте и текущее состояние, переходит в новое состояние и добавляет в конец очереди произвольную строку. Докажите, что автомат с очередью может распознать любой перечислимый язык (указание: просимулируйте на автомате с очередью автомат с двумя стеками).
# Докажите, что машина Тьюринга без возможности записи на ленту, эквивалентна по вычислительной мощности конечному автомату.
# Отберем у машины Тьюринга возможность перемещаться налево, но разрешим новую команду RESET, которая перемещает головку на первый символ входного слова. Докажите, что такая модификация не меняет вычислительной мощности машины Тьюринга.
# Пусть машине Тьюринга разрешено производить запись в каждую ячейку ленты только два раза: если значение в этой ячейке менялось уже дважды, запрещается записывать туда другой символ. Докажите, что такая модификация не меняет вычислительной мощности машины Тьюринга.
# Пусть машине Тьюринга разрешено производить запись в каждую ячейку ленты только один раз: если значение в этой ячейке уже менялось, запрещается записывать туда другой символ. Докажите, что такая модификация не меняет вычислительной мощности машины Тьюринга.