Изменения

Перейти к: навигация, поиск

Теорема Гринберга

85 байт добавлено, 02:13, 1 октября 2018
Использование теоремы
== Использование теоремы ==
* Сам Гринберг использовал свою теорему для того, чтобы искать негамильтоновы кубические(все вершины имеют степень <tex>3</tex>) [https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D0%B8%D1%8D%D0%B4%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D0%B3%D1%80%D0%B0%D1%84 полиэдральные графы] с высокой циклической связностью.
* Теорема Гринберга {{---}} необходимое условие для планарного графа, чтобы граф содержал гамильтонов цикл, основанное на длинах циклов граней.
* Теорема Гринберга используется также для поиска планарных гипогамильтоноввых графов путём построения графа, в котором все грани имеют число рёбер, сравнимых с <tex>2 </tex> по модулю <tex>3</tex>.* Теорему Гринберга можно иногда использовать для доказательства отсутствия гамильтонова бонда в графе. Пусть, например, все вершины связного графа <tex> G </tex>, кроме одной, имеют степени, сравнимые с <tex>2 </tex> по модулю <tex>3</tex>. Тогда левая часть формулы '''<tex>\textbf{(1)''' }</tex> не делится на <tex>3 </tex> и, следовательно, гамильтонова бонда в графе <tex> G </tex> не существует. Рисунок '''<tex>1''' </tex> иллюстрирует этот простой пример.
[[Файл: Новый гамильтонов_бонд.png|300px|thumb|center|Рис. 1]]
78
правок

Навигация