66
правок
Изменения
Нет описания правки
Это означает, что найдется такая константа $c$, что $k \geqslant c \cdot n \log n$.
Таким образом $c \cdot n \log n \leqslant k \leqslant \dfrac{n}{2} \cdot d \Rightarrow c \cdot n \log n \leqslant \dfrac{n}{2}\cdot d \Rightarrow 2c\log n \leqslant d \Rightarrow d = \Omega(\log n)$
}}
{{Утверждение
|statement=Не существует алгоритма добавления элемента в упорядоченный массив с сохранением порядка, за истинное время $\mathcal{o}(\log n)$, где $n$ {{---}} количество элементов в массиве,
|proof=Допустим, есть такой алгоритм. Тогда создадим пустой массив и будем последовательно добавлять в него элементы массива, который хотим отсортировать. В итоге на выходе алгоритма получим отсортированный массив.
Тогда сравнений будет $\mathcal{o}(\log 1) + \mathcal{o}(\log 2) + \ldots + \mathcal{o}(\log{(n-1)}) = \mathcal{o}(n\log n)$. Но теорема утверждает, что их должно быть $\Omega(n\log n)$.
}}