390
правок
Изменения
→Логическая схема мультиплексора
[[Файл:LogicSircuit1to8.png|thumb|180px|Логическая схема мультиплексора 8-to-1]]
Заметим, что [[дешифратор]] имеет $n$ входов и $2^n$ выходов, причём на всех все выходы дешифратора подаётся $0$ кроме выхода $z_i$, на который подаётся $1$, где $i$ - число, которое кодируется его входами.
Тогда давайте построим дешифратор ${n}-to-{2^n}$ (это значит, что у дешифратора имеется $n$ входов и $2^n$ выходов), на вход ему подадим входы $s_0$, $s_1$, $\ldots$, $s_{n-1}$, а выходы этого дешифратора обозначим как $y_0$, $y_1$, $\ldots$, $y_{2^n-1}$, а потом с помощью гейта $AND$ соединим выход $y_i$ дешифратора с входом $x_i$ мультиплексора, потом соединим все гейты с выходом $z$. Давайте разберёмся, почему эта схема правильная: очевидно, что если входы $s_0$, $s_1$, $\ldots$ $s_{n-1}$ кодируют вход $i$, то это значит, что только $y_i$ выход дешифратора будет иметь $1$, тогда как на остальных выходах будет $0$, значит, что значения на входах $x_0$, $x_1$, $\ldots$, $x_{i-1}$, $x_{i+1}$, $\ldots$, $x_{2^n-1}$ на ответ никак повлиять не могут. Теперь, если на входе $x_i$ было $0$, то на выходе $z$ будет $0$, если же на входе $x_i$ был $1$, то на выходе $z$ будет $1$.