Изменения

Перейти к: навигация, поиск

Теория Рамсея

150 байт добавлено, 20:12, 30 ноября 2018
Нет описания правки
Часто определение для чисел Рамсея дается через задачу "о друзьях и незнакомцах"<ref>[https://en.wikipedia.org/wiki/Theorem_on_friends_and_strangers| Theorem on friends and strangers]</ref>. Пусть на вечеринке каждые два человека могут быть либо друзьями, либо незнакомцами, в общем виде задачи требуется найти, какое минимальное количество людей нужно взять, чтобы хотя бы <tex>m</tex> человек были попарно знакомы, или хотя бы <tex>n</tex> человек были попарно незнакомы. Если мы переформулируем данную задачу в терминах графов, то как раз получим определение числа Рамсея <tex>r(m, n)</tex>, представленное ранее.
Чтобы получить лучшее представление природы чисел Рамсея, приведем пример. Докажем, что <tex>r(3,3) = 6</tex>. Представим, что ребра <tex>K_6</tex> раскрашены в два цвета: красный и синий. Возьмем вершину <tex>v</tex>. Данной вершине, как и всем другим, инцидентны <tex>5</tex> рёбер, тогда, согласно принципу Дирихле, хотя бы три из них одного цвета. Для определенности положим, что хотя бы <tex>3</tex> ребра, соединяющие вершину <tex>v</tex> с вершинами <tex>r</tex>, <tex>s</tex>, <tex>t</tex>, синие. Если хотя бы одно из ребер <tex>rs</tex>, <tex>rt</tex>, <tex>st</tex> синее, то в графе есть синий треугольник (полный граф на трёх вершинах), иначе, если они все красные, есть красный треугольник. Таким образом, <tex>r(3,3) \le leqslant 6 </tex>.
Чтобы доказать, что <tex>r(3,3) = 6 </tex>, предъявим такую раскраску графа <tex>K_5</tex>, где нет клики на трех вершинах ни синего, ни красного цвета. Такая раскраска представлена на рисунке справа.
===Теорема Рамсея. Оценки сверху===
{{Теорема|id=ter1|about=1, Теорема Рамсея
|statement= Для любых <tex>n,m \in \mathbb N</tex> существует число <tex>r(n,m)</tex>, при этом <tex>r(n,m) \le leqslant r(n,m-1)+r(n-1,m)</tex>, а также если числа <tex>r(n,m-1)</tex> и <tex>r(n-1,m)</tex> четные, то неравенство принимает вид <tex>r(n,m) \le leqslant r(n,m-1)+r(n-1,m) - 1</tex> .
|proof=
Предположим <tex>|M|\geqslant p=r(n-1,\;m)</tex>. Тогда либо подграф, порождённый множеством <tex>M</tex>, содержит белый <tex>K_m</tex> и доказательство завершено, либо он содержит чёрный <tex>K_{n-1}</tex>, который вместе с вершиной <tex>1</tex> образует чёрный <tex>K_n</tex>. Случай <tex>|N|\geqslant q=r(n,\;m-1)</tex> рассматривается аналогично.
}}
{{Утверждение|id=u1|about=1|statement=Для натуральных чисел <tex>m,n</tex> выполняется равенство <tex>r(n,m) \le leqslant C_{n+m-2}^{n-1}</tex>
|proof=
Очевидно, <tex>C^{n-1}_{n+m-2}=1</tex> при <tex>n=1</tex> или <tex>m=1</tex>, как и соответствующие числа Рамсея. Индукцией по <tex>n</tex> и <tex>m</tex> при <tex>n,m \ge geqslant 2</tex> получаем <tex>r(n,m) \le leqslant r(n,m-1)+r(n-1,m) \le leqslant C^{n-1}_{n+m-3}+C^{n-2}_{n+m-3}=C^{n-1}_{n+m-2}</tex>
}}
{{Теорема|id=ter2|about=2
|statement=Для любого натурального числа <tex>k \ge geqslant 2</tex> выполняется неравенство <tex>r(k,k) \ge geqslant k^{k/2}</tex>
|proof=
Так как <tex>r(2,2)=2</tex>, достаточно рассмотреть случай <tex>k \ge geqslant 3</tex>.
Зафиксируем множество различных помеченных вершин <tex>v_i,\ldots,v_n</tex>. Пусть <tex>g(n,k)</tex> {{---}} доля среди всех графов на вершинах <tex>v_i,\ldots,v_n</tex> тех графов, что содержат клику на <tex>k</tex> вершинах. Всего графов на наших вершинах, очевидно <tex>2^{C^2_n}</tex> (каждое из возможных рёбер <tex>C^2_n</tex> можно провести или не провести).
Посчитаем графы с кликой на <tex>k</tex> вершинах следующим образом: существует <tex>C^k_n</tex> способов выбрать <tex>k</tex> вершин для клики в нашем множестве, после чего все рёбра между ними будем считать проведенными, а остальные ребра выбираются произвольно. Таким образом, каждый граф с кликой на <tex>k</tex> вершинах будет посчитан, причём некоторые даже более одного раза. Количестве графов с кликой оказывается не более, чем <tex>C^k_n\cdot 2^{C^2_n-C^2_k}</tex>. Следовательно,
<tex>g(n,k) \le leqslant \dfrac{C^k_n}{2^{C^2_k}}<\dfrac{n^k}{k!\cdot 2^{C^2_k}}</tex> <tex>(*)</tex>
Подставив <tex>n<2^{k/2}</tex> в неравенство <tex>(*)</tex> мы получаем
<tex>g(n,k)<\dfrac{2^{k^2/2}\cdot 2^{-C^2_k}}{k!}=\dfrac{2^{k/2}}{k!}<\dfrac12</tex> при <tex>k \ge geqslant 3</tex>
Предположим, что <tex>r(k,k)=n<2^{k/2}</tex> и разобьём все графы на <tex>n</tex> вершинах на пары <tex>G, \overline G</tex> (граф и его дополнение) Так как <tex>g(n,k)<\dfrac12</tex>, то существует пара, в которой ни <tex>G</tex>, ни <tex>\overline G</tex> не содержат клики на <tex>k</tex> вершинах. Рассмотрим раскраску рёбер <tex>K_n</tex> в два цвета, в которой ребра цвета <tex>1</tex> образуют граф <tex>G</tex>. В такой раскраске нет клики на <tex>k</tex> вершинах ни цвета <tex>1</tex>, ни цвета <tex>1</tex>, получили противоречи противоречие. Значит <tex>n</tex> было выбрано неверно. Из этого следует <tex>r(k,k) \ge geqslant 2^{k/2}</tex>.
}}
|id=def5
|definition=
Пусть <tex>m,k,n_1,\ldots ,n_k \in \mathbb N</tex>, причём <tex>n_1,\ldots ,n_k \ge geqslant m</tex>. '''Число Рамсея''' <tex>r_m(n_1,\ldots ,n_k)</tex> — наименьшее из всех таких чисел <tex>x \in \mathbb N</tex>, что при любой раскраске <tex>m</tex>-элементных подмножеств <tex>x</tex>-элементного множества <tex>M</tex> в <tex>k</tex> цветов для некоторого <tex>i \in [1\ldots k]</tex> обязательно найдётся такое множество <tex>W_i</tex>, что <tex>|W_i|=n_i</tex> и все <tex>m</tex>-элементные подмножества множества <tex>W_i</tex> имеют цвет <tex>i</tex>. Число <tex>m</tex> называют '''размерностью''' числа Рамсея <tex>r_m(n_1,\ldots ,n_k)</tex>.
}}
Заметим, что числа Рамсея размерности <tex>2</tex> — это определённые ранее числа Рамсея для клик.
{{Теорема
|id=ter4|about=4, Теорема Рамсея для чисел больших размерностей
|statement=Пусть <tex>m,k,n_1,\ldots,n_k</tex> {{---}} натуральные числа, причем <tex>k \ge geqslant 2</tex>, а <tex>n_1,\ldots ,n_k \ge geqslant m</tex>. Тогда существует число Рамсея <tex>r_m(n_1,\ldots n_k)</tex>.
|proof=
<tex>1)</tex> Мы будем доказывать теорему по индукции. Начнем со случая <tex>k=2</tex>. Приступая к доказательству для числа <tex>r_m(n_1,n_2)</tex> мы будем считать доказанным утверждение теоремы для чисел Рамсея всех меньших размерностей и чисел Рамсея размерности <tex>m</tex> с меньшей суммой <tex>n_1+n_2</tex>. В качестве базы будем использовать случай чисел Рамсея размерности <tex>2</tex> разобранный выше. Итак, мы докажем, что <tex>r_m(n_1,n_2)-1 \le leqslant p=r_{m-1}(r_m(n_1-1,n_2),r_m(n_1,n_2-1))</tex>.
Рассмотрим <tex>(p+1)</tex>-элементное множество <tex>M</tex> и выделим в нём элемент <tex>a</tex>. Пусть <tex>M_0=M \setminus \{ a \}</tex>. Пусть <tex>\rho:M^m\rightarrow \{1, 2 \} </tex> — произвольная раскраска в два цвета. Рассмотрим раскраску <tex>\rho': M_0^{m-1} \rightarrow \{1, 2\} </tex> , определённую следующим образом: для каждого множества <tex>B \in M_0^{m-1}</tex> пусть <tex>\rho'( B ) = \rho(B \cup \{ a \})</tex>.
<tex>2)</tex> При <tex>k>2</tex> будем вести индукцию по <tex>k</tex> с доказанной выше базой <tex>k=2</tex>. При <tex>k>2</tex> мы докажем неравенство.
<tex>r_m(n_1,\ldots ,n_k) \le leqslant q=r_m(r_m(n_1,\ldots ,n_{k-1}),n_k)</tex>
Для этого мы рассмотрим множество <tex>M</tex> на <tex>q</tex> вершинах и произвольную раскраску <tex>\rho:M^m \rightarrow [1 \ldots k]</tex> в <tex>k</tex>цветов. Рассмотрим раскраску <tex>\rho':M^m \rightarrow \{0,k\}</tex>, в которой цвета <tex>1,\ldots,k-1</tex> раскраски <tex>\rho</tex> склеены в цвет <tex>0</tex>. Тогда существует либо такое подмножество <tex>M_0 \subset M</tex>, что <tex>|M_0|=r_m(n_1,\ldots ,n_{k-1})</tex> и <tex>\rho'(A)=0</tex> на всех <tex>A \in M_0^m</tex>, либо существует такое <tex>n_k</tex>-элементное подмножество <tex>M_k \subset M</tex>, что <tex>\rho(A)=\rho'(A)=k</tex> на всех <tex>A \in M^m_k</tex>. Во втором случае <tex>M_k</tex> — искомое подмножество, а в первом случае заметим, что на любом подмножестве <tex>A \in M_0^m</tex> из <tex>\rho'(A)=0</tex> следует <tex>\rho(A) \in [1 \ldots k-1]</tex>. Исходя из размера множества <tex>M_0</tex> по индукционному предположению получаем, что найдется искомое подмножество множества <tex>M</tex> для одного из цветов <tex>1,\ldots ,k-1</tex>, таким образом неравенство доказано, а из этого следует и существование числа Рамсея <tex>r_m(n_1,\ldots ,n_k)</tex>.
{{Лемма
|id=l1|about=1|statement=Пусть <tex>m>1</tex>, а граф <tex>H</tex> таков, что <tex>v(H) \ge geqslant (m-1)(n-1)+1</tex> и <tex>\alpha(H) \le leqslant m-1</tex>. Тогда граф <tex>H</tex> содержит в качестве подграфа любое дерево на <tex>n</tex> вершинах.
|proof=
Зафиксируем <tex>m</tex> и проведем индукцию по <tex>n</tex>.
'''База:''' для <tex>n=1</tex> очевидно.
'''Индукционный переход:''' Пусть верно для <tex>n-1</tex>, докажем для <tex>n</tex>. Рассмотрим произвольное дерево <tex>T_n</tex> на <tex>n</tex> вершинах, пусть дерево <tex>T_{n-1}</tex> получено из <tex>T_n</tex> удалением висячей вершины. Пусть <tex>U</tex> — максимальное независимое множестве вершин графа <tex>H</tex>. Тогда <tex>|U|=\alpha(H) \le leqslant m-1</tex>, следовательно <tex>v(H-U) \ge geqslant (m-1)(n-2)+1</tex> и очевидно <tex>\alpha(H-U) \le leqslant m-1</tex>.
По индукционному предположению, граф <tex>H-U</tex> содержит в качестве подграфа дерево <tex>T_{n-1}</tex>. Пусть <tex>a</tex> — вершина этого дерева, присоединив к которой висячую вершину мы получим дерево <tex>T_n</tex>. Заметим, что множество <tex>U \cup</tex> <tex>\{a\}</tex> не является независимым ввиду максимальности <tex>U</tex>. Следовательно, вершина <tex>a</tex> смежна хотя бы с одной вершиной <tex>x \in U</tex>. Отметим, что <tex>x \not\in V(T_{n-1})</tex> и, присоединив вершину <tex>x</tex> к вершине <tex>a</tex> дерева <tex>T_{n-1}</tex>, получим дерево <tex>T_n</tex> в качестве подграфа графа <tex>H</tex>.
}}
|statement=<tex>r(T_n,K_m)=(m-1)(n-1)+1</tex>, где <tex>T_n</tex> — дерево на <tex>n</tex> вершинах.
|proof=
<tex>1)</tex> Докажем, что <tex>r(T_n,K_m) \ge geqslant (m-1)(n-1)+1</tex>. Для этого предъявим раскраску рёбер графа <tex>K_{(m-1)(n-1)}</tex>, в которой нет ни одного связного подграфа на <tex>n</tex> вершинах с рёбрами цвета <tex>1</tex> и нет клики на <tex>m</tex> вершинах с рёбрами цвета <tex>2</tex>. Разобьём вершины графа на <tex>m-1</tex> клику по <tex>n-1</tex> вершине и покрасим все рёбра этих клик в цвет <tex>1</tex>. Тогда любой связный подграф с рёбрами цвета <tex>1</tex> содержит не более <tex>n-1</tex> вершины, в частности, нет подграфа с рёбрами цвета <tex>1</tex>, изоморфного <tex>T_n</tex>. Рёбра цвета <tex>2</tex> (то есть, все оставшиеся рёбра) образуют <tex>(m-1)</tex>-дольный граф, в котором, очевидно, нет клики на <tex>m</tex> вершинах.
<tex>2)</tex> Рассмотрим произвольную раскраску рёбер полного графа <tex>K_{(m-1)(n-1)+1}</tex> в два цвета. Предположим, что не существует клики на <tex>m</tex> вершинах с рёбрами цвета <tex>2</tex>. Тогда <tex>m>1</tex> и <tex>\alpha(G_1) \le leqslant m-1</tex>. По [[#l1|лемме <tex>1</tex>]], граф <tex>G_1</tex> содержит в качестве подграфа любое дерево на <tex>n</tex> вершинах, в частности, дерево, изоморфное <tex>T_n</tex>.
}}
442
правки

Навигация