115
правок
Изменения
Выброс
,Нет описания правки
'''Выброс'''(англ. ''outliersoutlier'') — такая часть небольшая доля объектов во входных данных, которая сильно выделяется из общей выборки. Многие алгоритмы машинного обучения чувствительны к разбросу и распределению значений атрибутов во входных данных. Выбросы Соответственно выбросы во входных данных могут исказить и ввести в заблуждение процесс обучения алгоритмов машинного обучения, что приводит к увеличению времени обучения, снижению точности моделей и, в конечном итоге, к снижению результатов. Даже до подготовки предсказательных моделей на основе обучающих данных выбросы могут приводить к ошибочным представлениям и в дальнейшем к ошибочной интерпретации собранных данных.
===Причины возникновения выбросов===
* Сбой работы оборудования
* Уникальные явления
* и др.
==Примеры=={|align="center" |-valign="top" |[[Файл:Outlier_norm.png|200px|thumb|Рис 1. Хорошо обученная модель с выбросами]] |[[Файл:Outlier_bad.png|200px|thumb|Рис 2. Переобученная модель на выбросах]] |}Рис 1 показывает хорошо обученную модель, в которой присутствуют два выброса. Как видно из рисунка данная модель показала себя устойчивой к выбросам, либо же вовремя прекратила своё обучение. Обратная ситуация обстоит с Рис 2, где модель сильно переобучилась из-за присутствующих в ней выбросов.
==Методы обнаружения и борьбы с выбросами==
===Методы обнаружения выбросов===
# Экстремальный анализ данных(англ. ''extreme value analysis''). При таком анализе не применяются какие-либо специальные статистические методы. Обычно этот метод применим для одномерного случая. Алгоритм использования таков:
#* Визуализировать данные, используя диаграммы, и гистограммы и _, для нахождения экстремальных значений.
#* Задействовать распределение, например Гауссовское, и найти значения, чье стандартное отклонение отличается в 2-3 раза от математического ожидания или в полтора раза от первой либо третьей квартилей.
#* Отфильтровать предполагаемые выбросы из обучающей выборки и оценить работу модели.
7: пока коэффиценты <math>\gamma_i</math> не стабилизируются;
Пример. Допустим мы пытаемся восстановить зависимость, используя ''формулу Надарая-Ватсона''<ref>http://www.machinelearning.ru/wiki/index.php?title=%D0%9E%D1%86%D0%B5%D0%BD%D0%BA%D0%B0_%D0%9D%D0%B0%D0%B4%D0%B0%D1%80%D0%B0%D1%8F-%D0%92%D0%B0%D1%82%D1%81%D0%BE%D0%BD%D0%B0</ref> по некоторым данным из n наблюдений, 2 из которых имеют излишне высокое и излишне низкое значения соответственно. Большие ошибки, вызванные этими выбросами, довольно заметно исказят полученный результат по формуле. В методе локально взвешенного сглаживания мы домножаем веса объектов <math>w_i</math> на коэффиценты <math>\gamma_i=\widetilde{K}\left(\varepsilon_i\right)</math>, значения которых тем меньше, чем величина ошибки <math>\varepsilon_i</math>. Для этого мы возьмём квартическое ядро (не обязательно совпадающее с основным ядром) <math>\widetilde{K}\left(\varepsilon\right)=K_Q\left(\frac{\varepsilon}{6Me\left\{\varepsilon_i\right\}}\right)</math>, где <math>Me\left \{\varepsilon_i\right \}</math> — медиана множества значений <math>\varepsilon_i</math>.
Таким образом выбросы будут нивелироваться автоматически при использовании данного подхода. В статистике методы, устойчивые к нарушениям модельных предположений о данных, называются ''робастными''. Метод локально взвешенного сглаживания относится к ''робастным'' методам, так как он устойчив к наличию небольшого количества выбросов. Помимо описанного метода к ''робастным'' методам можно также отнести деревья * Дерево принятия решения (англ. ''decision tree''<ref>https://ru.wikipedia.org/wiki/%D0%94%D0%B5%D1%80%D0%B5%D0%B2%D0%BE_%D1%80%D0%B5%D1%88%D0%B5%D0%BD%D0%B8%D0%B9</ref>). Это дерево, как и уже описанный алгоритм локально взвешенного сглаживания, относится ''робастным'' методам.
==См.также==