Изменения
Нет описания правки
Распространенными вариантами для $\mu$ являются:
*Коэффициент ранговой корреляции Спирмена <ref>[https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient Определение коэффициента ранговой корреляции Спирмена]</ref>(англ. ''Spearman's rank correlation coefficient''): $p(x, y)=\displaystyle \frac{\sum_{i, j}(x_{ij}-\bar{x_j})(y_i-\bar{y})}{\sqrt{\sum_{i, j}(x_{ij}-\bar{x_j})^2\sum_i(y_i-\bar{y})^2}}$;*Information gain<ref>[https://en.wikipedia.org/wiki/Information_gain_in_decision_trees Определение information gain]</ref>: $IG(x, y)=\displaystyle -\sum_{i=1}^kp(c_i)\log_2{(p(c_i))}+\sum_{i=1}^{n}p(t_i)\sum_{j=1}^kp(c_j|t_i)log_2{(p(c_j|t_i))}$, и другие.
Преимуществом группы фильтров является простота вычисления релевантности признаков в датасете, но недостатком в таком подходе является игнорирование возможных зависимостей между признаками.