Изменения

Перейти к: навигация, поиск

Байесовские сети

839 байт добавлено, 23:30, 9 марта 2019
Нет описания правки
С помощью цепного правила рассчитаем вероятность того, что умный студент получает B по лёгкому курсу, высокий балл по SAT и плохое рекомендательное письмо: <math> P(i1, d0, g2, s1, l0) = P(i1)P(d0)P(g2 | i1, d0)P(s1 | i1)P(l0 | g2) = 0.3*0.6*0.08*0.8*0.4 = 0.004608. </math>
 
Байесовская сеть представляет законное распределение:
* Вероятность исхода в Байесовской сети неотрицательна, так как вычисляется как произведение условных вероятностей событий, которые неотрицательны.
* Сумма вероятностей исходов в Байесовской сети равна единице:
 
<math>\sum\limits_{D,I,G,S,L} P(D,I,G,S,L) = \sum\limits_{D,I,G,S,L} P(D)P(I)P(G|I,D)P(S|I)P(L|G) = \sum\limits_{D,I,G,S} P(D)P(I)P(G|I,D)P(S|I) \sum\limits_{L} P(L|G) = \sum\limits_{D,I,G,S} P(D)P(I)P(G|I,D)P(S|I) = </math>
 
<math>\sum\limits_{D,I,G} P(D)P(I)P(G|I,D) \sum\limits_{S} P(S|I) = \sum\limits_{D,I,G} P(D)P(I)P(G|I,D) = ... </math>
== Источники информации ==
* Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani. 2014. Probabilistic programming. In Proceedings of the on Future of Software Engineering (FOSE 2014). ACM, New York, NY, USA, 167-181. DOI=10.1145/2593882.2593900 doi.acm.org/10.1145/2593882.2593900
Анонимный участник

Навигация