Изменения

Перейти к: навигация, поиск

Ядра

1172 байта добавлено, 00:43, 5 апреля 2019
Первая версия конспекта
'''Ядро''' (англ. ''kernel'') — функция $K: X \times X \to \mathbb{R}$, которая является скалярным произведением в некотором спрямляющем пространстве: $K(\vec{x}_1, \vec{x}_2) = \langle \psi(\vec{ В разработке x}_1), \psi(\vec{x}_2) \rangle$ при некотором $\psi : X \to H$, где $H$ — пространство со скалярным произведением.
'''Ядро''' (англ. ''kernel'') — функция $K: X \times X \to \mathbb{R}$, которая является скалярным произведением в некотором спрямляющем пространстве: $K(\vec{x}_1, \vec{x}_2) = \langle \psi(\vec{x}_1), \psi(\vec{x}_2) \rangle$ при некотором $\psi : X \to H$, где $H$ — пространство со скалярным произведением.= Выбор ядра ==
Теорема Мерсера определяет условия, при которых функция может являться ядром:
Проверка неотрицательной определённости является довольно трудоёмкой, поэтому на практике теорема явно не используется. Проблема выбора лучшего ядра на сегодняшний день остаётся открытой, лучшие из известных на данный момент решений основываются на генетических алгоритмах<ref>[https://www.researchgate.net/publication/221080223_An_Evolutionary_Approach_to_Automatic_Kernel_Construction T.Howley, M.G.Madden — An Evolutionary Approach to Automatic Kernel Construction]</ref>). Обычно в практических реализациях ограничиваются перебором нескольких функций, про которые известно, что они являются ядрами, и выбирают среди них лучшую при помощи кросс-валидации. Кроме того, существуют правила порождения ядер, которые также применяются для расширения пространства перебираемых функций.
== Конструктивные методы синтеза ядер ==
Конструктивные В целях достижения большей гибкости, и как следствие, более точных результатов, простые ядра могут быть объединены в более сложные функции, которые также будут являться ядром. Для этого используются следующие методы синтеза ядер:
# $K(\vec{x}_1, \vec{x}_2) = \langle \vec{x}_1, \vec{x}_2 \rangle \quad$ (скалярное произведение)
# $K(\vec{x}_1, \vec{x}_2) = f(K_1(\vec{x}_1, \vec{x}_2)) \quad$ ($f: \mathbb{R} \to \mathbb{R}$ представима в виде сходящегося степенного ряда с неотрицательными коэффициентами)
== Стандартные ядра ==
Существует несколько "стандартных" ядер, которые соответствуют известным алгоритмам классификации:
* $K(\vec{x}_1, \vec{x}_2) = \exp(-\beta \lVert \vec{x}_1 - \vec{x}_2 \rVert^2)$ — сеть радиальных базисных функций (англ. ''RBF'')
== См. также ==
* [[Метод опорных векторов (SVM)]]
 
== Примечания ==
<references/>
 
== Источники информации ==
* [http://www.machinelearning.ru/wiki/index.php?title=%D0%9C%D0%B0%D1%88%D0%B8%D0%BD%D0%B0_%D0%BE%D0%BF%D0%BE%D1%80%D0%BD%D1%8B%D1%85_%D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%BE%D0%B2 machinelearning.ru — Машина опорных векторов]
* [https://www.youtube.com/watch?v=Adi67_94_gc&list=PLJOzdkh8T5kp99tGTEFjH_b9zqEQiiBtC&index=5 Лекция "Линейные методы классификации: метод опорных векторов"] — К.В. Воронцов, курс "Машинное обучение" 2014
[[Категория: Машинное обучение]]
[[Категория: Классификация]]
[[Категория: Регрессия]]
23
правки

Навигация