Изменения
Нет описания правки
# Множество называется m-полным, если к нему m-сводится любое перечислимое множество. Докажите, что универсальное множество является $m$-полным.
# Докажите, что диагональ универсального множества (множество $\{u | (u, u) \in U\}$ является m-полным.
# Рассмотрим список слов $A = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ над алфавитом $\Sigma$. Введем $n$ новых различных символов $d_1, d_2, \ldots, d_n$. Рассмотрим алфавит $\Sigma' = \Sigma \cup \{d_1, d_2, \ldots, d_n\}$. Рассмотрим КС-грамматику с одним нетерминалом $S$, алфавитом $\Sigma'$ и $n + 1$ правилом: $S \to \alpha_1 S d_1$, $S \to \alpha_2 S d_2, \ldots, S \to \alpha_n S d_n$, $S \to \varepsilon$. Язык, порождаемый этой грамматикой, называется языком списка $A$ и обозначается как $L_A$. Опишите все слова языка $L_A$.
# Докажите, что проверка грамматики на однозначность является неразрешимой проблемой. Указание: сведите к ней или её дополнению проблему соответствий Поста, используя конструкцию языка списка из предыдущего задания.
# Докажите, что для любого списка $A$ дополнение до его языка списка $\overline{L_A}$ является КС-языком. Указание: постройте МП-автомат для $\overline{L_A}$.
# Докажите, что проблема проверки пустоты пересечения двух КС-грамматик неразрешима.
# Докажите, что проблема проверки эквивалентности двух КС-грамматик неразрешима.
# Докажите, что проблема проверки, что язык заданной КС-грамматики совпадает с языком заданного регулярного выражения, неразрешима.
# Докажите, что проблема проверки того, что любое слово можно породить в заданной КС-грамматике, неразрешима.
# Докажите, что проблема проверки того, что язык одной заданной КС-грамматики входит в язык другой заданной КС-грамматики, неразрешима.
# Докажите, что проблема проверки того, что язык заданного регулярного выражения входит в язык заданной КС-грамматики, неразрешима.
# Докажите, что проблема проверки того, что язык заданной КС-грамматики содержит палиндром, неразрешима.
# Пусть задано два списка $A$ и $B$. Докажите, что $\overline{L_A} \cup \overline{L_B}$ является регулярным тогда и только тогда, когда он совпадает с $\Sigma'^*$. Следовательно проблема проверки того, что КС-грамматика порождает регулярный язык, неразрешима.
# Докажите, что проблема проверки того, что дополнение языка заданной КС-грамматики является КС-языком, неразрешима.
# Рассмотрим абстрактный вычислитель "автомат с очередью" - по аналогии с автоматом с магазинной памятью, но вместо стека очередь. На переходе автомат извлекает первый символ из головы очереди, смотрит очередной символ на ленте и текущее состояние, переходит в новое состояние и добавляет в конец очереди произвольную строку. Докажите, что автомат с очередью может распознать любой перечислимый язык (указание: просимулируйте на автомате с очередью автомат с двумя стеками).
# Докажите, что машина Тьюринга без возможности записи на ленту, эквивалентна по вычислительной мощности конечному автомату.
# Отберем у машины Тьюринга возможность перемещаться налево, но разрешим новую команду RESET, которая перемещает головку на первый символ входного слова. Докажите, что такая модификация не меняет вычислительной мощности машины Тьюринга.
# Пусть машине Тьюринга разрешено производить запись в каждую ячейку ленты только два раза: если значение в этой ячейке менялось уже дважды, запрещается записывать туда другой символ. Докажите, что такая модификация не меняет вычислительной мощности машины Тьюринга.
# Пусть машине Тьюринга разрешено производить запись в каждую ячейку ленты только один раз: если значение в этой ячейке уже менялось, запрещается записывать туда другой символ. Докажите, что такая модификация не меняет вычислительной мощности машины Тьюринга.