Изменения

Перейти к: навигация, поиск

Типы дифференциальных уравнений

18 байт добавлено, 01:18, 23 июля 2019
м
Однородные уравнения: отображение дробей и скобок, пробелы
==Однородные уравнения==
{{Определение|definition = уравнение вида <tex>M(x, y)dx + N(x, y)dy = 0 \:\: (3)</tex>, где M и N - однородные функции одного измерения, называется однородным уравнением}}
{{Определение | definition= <tex>f(x, y) \ - </tex> однородная функция измерения n <tex>\Leftrightarrow \: f(\lambda x, \lambda y) = \lambda^{n}f(x, y)</tex> }}<b>Решение:</b> произвести замену <tex>t = \fracdfrac{y}{x}</tex> {{Определение | definition= <tex dpi=150>\dfrac{dy}{dx}=f\left(\dfrac{y}{x}\right) \ -</tex>один из видов однородного уравнения. }}
{{Определение | definition= <tex dpi=150>\frac{dy}{dx}=f(\frac{y}{x})</tex> - один из видов однородного уравнения. }}
==Уравнения приводящиеся к однородным==
{{Определение|definition= уравнение вида <tex dpi = 150>\frac{dy}{dx}= f(\frac{a_{1}x + b_{1}y + c_{1}}{a_{2}x + b_{2}y + c_{2}}) (4)</tex> называется уравнением приводящимся к однородному}}
2
правки

Навигация