Изменения
Нет описания правки
# Докажите или опровергните равенства $\alpha \curlywedge(\beta\curlyvee\gamma)=(\alpha \curlywedge\beta)\curlyvee(\alpha\curlywedge\gamma)$ и $\alpha \curlyvee(\beta\curlywedge\gamma)=(\alpha \curlyvee\beta)\curlywedge(\alpha\curlyvee\gamma)$.
# Будем называть функцию $f$ регулярной, если из $x \ge_p y$ следует, что $f(x) \ge f(y)$. Верно ли, что регулярная функция является монотонной?
# Докажите, что если функция $f$ является пороговой и $a_1 \ge a_2 \ge \ldots \ge a_n\ge 0$, то $f$ является регулярной.