Изменения

Перейти к: навигация, поиск

Активное обучение

181 байт добавлено, 14:38, 6 февраля 2020
Нет описания правки
Зачастую обращение к оракулу затратно по времени или другим ресурсам, и требуется решить задачу, минимизируя количество обращений к оракулу.
Для вызова Вызов оракула обычно необходимо привлечение сопровождается привлечением человека или даже группы людей. В этой роли может выступать эксперт, размечающий текстовые документы, изображения или видеозаписи. Помимо временных затрат могут возникнуть и значительные финансовые, например, исследование химического соединения или реакции.
В связи с этим одной из центральных задач активного обучения становится '''отбор объектов''' (англ. ''Sampling'') {{---}} выбор тех объектов, которые следует отправить оракулу для получения достоверной информации об их классификации. От грамотности отбора зависит время работы алгоритма, качество классификации и затраты на внешние ресурсы.
Ниже будет рассматриваться задача классификации для активного обучения, но следует отметить, что задача регрессии формализуется аналогично.
== Постановка задачи классификации для активного обучения ==
 
 
Дано множество неразмеченных данных:
# $X_{unlabeled}$ {{---}} множество еще не размеченных объектов.
# $X_{labeled}$ {{---}} множество размеченных, которые удовлетворяют некоторому порогу уверенности в классификации.
# $X_{query}$ {{---}} множество объектов, которые подаются на вход оракулу. Заметим, что не всегда $X_{query} \subset X_{unlabeled}$, поскольку алгоритм может сам синтезировать объекты.
== Активное обучение с исследовательскими действиями ==
У рассмотренных выше стратегий отборв отбора есть недостатки: в пространстве $X$ могут оставаться неисследованные области, вследствие чего снижается качество и увеличивается время обучения. Эвристикой, позволяющей решить эту проблему, является выбор случайных объектов, комбинированный с детерминированным выбором по степени информативности.
Есть два алгоритма обертки над любой стратегией отбора  {{---}} алгоритм $\varepsilon$-active и алгоритм экспоненциального градиента (англ. ''Exponential gradient''). Алгоритм $\varepsilon$-active {{---}} это базовый вариант, в котором предлагается на каждой итерации производить следующие шаги:
52
правки

Навигация