Изменения

Перейти к: навигация, поиск
Матрица ошибок (англ. Сonfusion matrix)
<font color="green"># код для матрицы ошибок</font>
<font color="green">'''# Пример классификатора, способного проводить различие между всего лишь двумя</font> <font color="green">'''# классами, "пятерка" и "не пятерка" из набора рукописных цифр MNIST</font>
'''import''' numpy '''as''' np
'''from''' sklearn.datasets '''import''' fetch_openml
sgd_clf = SGDClassifier(random_state=42) #классификатор на основе метода стохастического градиентного спуска (англ. Stochastic Gradient Descent SGD)
sgd_clf.fit(X_train, y_train_5) #обучаем классификатор распозновать пятерки на целом обучающем наборе
<font color="green"># Для расчета матрицы ошибок сначала понадобится иметь набор прогнозов, чтобы их можно было сравнивать с фактическими целями # Можно получить прогнозы и на тестовом наборе. Но мы пока тестовый набор не трогаем. Тестовый набор используем только в самом конце проекта # после того, как будет готов классификатор, готовый кзапуску
y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)
print(confusion_matrix(y_train_5, y_train_pred))
<font color="green"># array([[53892, 687],</font> <font color="green"># [ 1891, 3530]])</font>
Безупречный классификатор имел бы только истинно-поло­жительные и истинно отрицательные классификации, так что его матрица ошибок содержала бы ненулевые значения только на своей главной диа­гонали (от левого верхнего до правого нижнего угла):
187
правок

Навигация