Изменения

Перейти к: навигация, поиск

Арифметические действия с числовыми рядами

61 байт добавлено, 23:48, 20 января 2011
м
-опечатки
{{Утверждение
|statement=
Пусть ряд из <tex>a_n \le geq 0</tex> сходится к <tex>A</tex>. Тогда <tex>\sum\limits_{n = 1}^{\infty} a_{\varphi(n)} = A</tex>
|proof=
<tex>B_n = a_{\varphi(1)} + a_{\varphi(2)} + \dots + a_{\varphi(n)}, \qquad m_n = \max\limits_{i = 1..n}{\varphi(i)}</tex>
:<tex>\frac 1k - \int_{k}^{k + 1} \frac {dx}x \le \frac 1k - \frac 1{k + 1} = \frac 1{k(k + 1)} \le \frac 1{k^2}</tex>
Итак, ряд <tex>\sum\limits_{k = 1}^{\infty}\left(\frac1k - \int_k^{k + 1} \frac{dx}x \right)</tex> является положительным и мажорируется сходящимся рядом <tex>\sum\limits_{k = 1}^{\infty} \frac 1{k^2}</tex>. Значит, этот ряд сходится.
В выражении <tex>(*)</tex> при предельном переходе и получаем искомую формулу, обозначая <tex>C = \sum\limits_{k = 1}^{\infty} \left ( \frac 1k - \int_{k}^{k + 1} \frac{dx}{x} \right )</tex>
{{Утверждение
|statement=
Сумма это этого ряда равна <tex>\frac{\ln 2}{2}</tex>
|proof=
Так как общее слагаемое ряда стремится к нулю, то достаточно показать, что сходится ряд с расставленными скобками:
Две суммы из конечного числа слагаемых перемножаются почленно. Для бесконечного числа слагаемых необходимо формализовать процесс перемножения.
Организуем бесконечную матрицу из чисел <tex>c_{ij} = a_i \cdot b_j</tex>. Пусть <tex>\varphi : \mathbb{N} \rightarrow \mathbb{N}^2</tex> {{- --}} правило обхода матрицы, по которому матрицу можно развернуть в строку, то есть ряд, сумму которого можно посчитать (при сходимости такого ряда).
Если сумма такого ряда равна произведению сумм исходных рядов, то говорят, что два ряда можно перемножить по способу <tex>\varphi</tex>.
403
правки

Навигация