Изменения
Нет описания правки
# Пусть машине Тьюринга разрешено производить запись в каждую ячейку ленты только два раза: если значение в этой ячейке менялось уже дважды, запрещается записывать туда другой символ. Докажите, что такая модификация не меняет вычислительной мощности машины Тьюринга.
# Пусть машине Тьюринга разрешено производить запись в каждую ячейку ленты только один раз: если значение в этой ячейке уже менялось, запрещается записывать туда другой символ. Докажите, что такая модификация не меняет вычислительной мощности машины Тьюринга.
# Клеточный автомат представляет собой двусторонне бесконечную ленту, каждая ячейка которой может находиться в некотором состоянии, множество состояний $Q$, обозначим состояние ячейки $i$ как $s[i]$. Исходно все ячейки находятся в состоянии $B \in Q$, кроме ячеек с номерами от 1 до $n$. Ячейка с номером $i$, где $1 \le i \le n$ находится в состоянии $x_i$, где $x$ - входное слово (будем считать, что $\Sigma \subset Q$, $B \notin \Sigma$). Правила работы клеточного автомата такие: задано число $d$ и функция $f : Q^{2d+1} \to Q$. За один шаг все клетки меняют состояние по следующему правилу: новое состояние клетки $i$ равно $f(s[i - d], s[i - d + 1], \ldots, s[i + d - 1], s[i + d])$. Если клетка с номером $0$ переходит в состояние $Y$, то автомат допускает слово $x$. Докажите, что для некоторого $d > \ge 1$ клеточный автомат эквивалентен по вычислительной мощности машине Тьюринга.
# Докажите, что счётчиковые машины с одним счётчиком распознают больше языков, чем конечные автоматы.
# Докажите, что счётчиковые машины с одним счётчиком распознают меньше языков, чем автоматы с одним стеком, даже детерминированные.