Изменения

Перейти к: навигация, поиск

Участник:Mk17.ru

2400 байт убрано, 19:22, 25 мая 2020
Условная и взаимная энтропия
<tex>\xi_t+1 = \xi_t + \eta_t, P{\eta_t = 1|\xi_t 6= 0 ∨ \xi_t 6= n} = p, P{\eta_t = −1|\xi_t 6= 0 ∨ \xi_t 6= n} = q
и P{\eta = 0|\xi_t = 0 ∨ \xi_t = n} = 1. </tex>
 
== Условная и взаимная энтропия ==
{{Определение
|definition = '''Условная энтропия''' (англ. ''conditional entropy'') {{---}} определяет количество остающейся энтропии (то есть, остающейся неопределенности) события <tex>A</tex> после того, как становится известным результат события <tex>B</tex>. Она называется ''энтропия <tex>A</tex> при условии <tex>B</tex>'', и обозначается <tex>H(A|B)</tex>
}}
<tex>H(A|B)= - \sum\limits_{i=1}^{m}p(b_i)\sum\limits_{j=1}^{n} p(a_j|b_i)\log_2p(a_j|b_i) </tex>
{{Определение
|definition = '''Взаимная энтропия''' (англ. ''joint entropy'') {{---}} энтропия объединения двух событий <tex>A</tex> и <tex>B</tex>.
}}
<tex> H(A \cap B) = -\sum\limits_{i=1}^{m} \sum\limits_{j=1}^{n} p(a_j \cap b_i)\log_2p(a_j \cap b_i) </tex>
{{Утверждение
|statement= <tex> H(A \cap B) = H(A|B)+H(B)=H(B|A)+H(A) </tex>
|proof= По формуле условной вероятности <tex dpi="130"> p(a_j|b_i)=\dfrac{p(a_j \cap b_i)}{p(b_i)} </tex>
 
<tex dpi="140"> H(A|B)=-\sum\limits_{i=1}^{m}p(b_i)\sum\limits_{j=1}^{n} p(a_j|b_i)\log_2p(a_j|b_i) </tex> <tex dpi="140">= - \sum\limits_{i=1}^{m}p(b_i) \sum\limits_{j=1}^{n} \dfrac{p(a_j \cap b_i)}{p(b_i)}\log_2 \dfrac {p(a_j \cap b_i)}{p(b_i)} = -\sum\limits_{i=1}^{m} \sum\limits_{j=1}^{n} p(a_j \cap b_i)\log_2 \dfrac {p(a_j \cap b_i)}{p(b_i)} = </tex>
<tex dpi="140"> = -\sum\limits_{i=1}^{m} \sum\limits_{j=1}^{n} p(a_j \cap b_i)\log_2p(a_j \cap b_i) + \sum\limits_{i=1}^{m} \sum\limits_{j=1}^{n} p(a_j \cap b_i)\log_2p(b_i) </tex><tex dpi="140">= H(A \cap B) +\sum\limits_{i=1}^{m} \sum\limits_{j=1}^{n} p(a_j \cap b_i)\log_2p(b_i) = </tex>
 
<tex dpi="140"> = H(A \cap B) +\sum\limits_{i=1}^{m} \log_2p(b_i)\sum\limits_{j=1}^{n} p(a_j \cap b_i) = H(A \cap B) +\sum\limits_{i=1}^{m} \log_2p(b_i)p(b_i) = </tex><tex dpi="140">H(A \cap B) - H(B) </tex>
 
Таким образом получаем, что: <tex> H(A \cap B)= H(A|B)+H(B) </tex>
 
Аналогично: <tex>H(B \cap A)= H(B|A)+H(A) </tex>
 
Из двух полученных равенств следует, что <tex> H(A|B)+H(B)=H(B|A)+H(A) </tex>
}}
== Источники информации ==
7
правок

Навигация