Изменения

Перейти к: навигация, поиск

Рекомендательные системы

33 байта добавлено, 21:58, 18 декабря 2020
Решение проблемы матрицы оценок
<tex> E_{(u,i)}(\hat{r}_{ui}(\Theta) - r_{ui})^2 \to min_{\Theta} </tex>.
То есть, нужно найти такие параметры <tex> \Theta </tex>, чтобы квадрат ошибки был наименьшим. Однако ситуация следующая: оптимизация приведет к наименьшим ошибкам в будущем, но как именно оценки будут спрашивать {{---}} неизвестно. Следовательно, это нельзя оптимизировать. Однако, так как оценки, уже проставленные пользователями, известны, постараемся минимизировать ошибку на тех данных, что у нас уже есть. Так же Также добавим регуляризатор.Получим, следующее:
<tex> \sum_{(u,i) \in D}{(\hat{r}_{ui}(\Theta) - r_{ui})^2} + \lambda \sum_{\theta \in \Theta}{\theta^2} \to min_{\Theta} </tex>
 
Регуляризация заключается в том, что минимизируется не только ошибка, но и некоторая функция параметров (например, норма вектора параметров). Это позволяет ограничить размер параметров в решении, уменьшает степень свободы модели.
442
правки

Навигация