Изменения

Перейти к: навигация, поиск

PixelRNN и PixelCNN

Нет изменений в размере, 00:44, 28 декабря 2020
Идея
== Идея ==
Так как утверждается, что значение текущего пикселя зависит от значений значения предыдущего, то уместно использовать [[:Рекуррентные_нейронные_сети|''рекуррентные нейронные сети (RNN)'']], а точнее [[Долгая краткосрочная память|''долгую краткосрочную память (LSTM)'']]. В ранних работах<ref name=SpatialLSTM>[https://arxiv.org/abs/1506.03478 Generative Image Modeling Using Spatial LSTMs]</ref> уже использовался данный подход, и вычисление скрытого состояния происходило следующим образом: <tex>h_{i,j}=f(h_{i-1,j}, h_{i,j-1}, x_{i,j})</tex>, т.е. для того, чтобы вычислить текущее скрытое состояние, нужно было подсчитать все предыдущие, что занимает достаточно много времени.
У алгоритма [[Долгая краткосрочная память|''LSTM'']] существует две модификации: '''''RowLSTM''''' и '''''Diagonal BiLSTM'''''. Основным преимуществом модификаций является возможность проводить вычисления параллельно, что ускоряет общее время обучения модели.
101
правка

Навигация