128
правок
Изменения
→Пуассон
==Пуассон==
Простая вставка одного изображения поверх другого нередко влечет заметный перепад яркости на границе вставки. Метод Пуассона заключается в сглаживании этого перепада с целью сделать дефект менее заметным, используя градиент вставляемого изображения и значения пикселей фонового изображения на границе вставки.
Пусть $N_pp$ {{---}} множество соседей $p$ координаты пикселя двухмерного изображения (четыре пикселя, имеющих общую границу с $p$, т.е. пиксели со следующими координатами: $(x + 1, y)$). $A_p$ {{---}} значения пикселя фонового изображение, (x $B_p$ {{-- 1, y), (x, y + 1), (x, y - 1)}} значение пикселя вставляемого изображения. Пусть $\Omega$). Для всех пар {{---}} множество координат $<p$, q>на которых определено вставляемое изображение $B$ таких, что . $q \in N_ppartial \Omega$, введем $v_{pq{---}} = B_p - B_q$координаты границы вставляемой области.
Обозначим результат блендинга за $O$. Для того чтобы найти значение пикселей в месте наложения $B$, решаем задачу минимизации: $\underset{f_p,\; p \in \Omega}{\mathrm{min}}\; \underset{p, q \in \Omega}{\sum}\; (O_p - O_q - v_{pq})^2$, где $O_p = B_pA_p$ для $p \in \partial \Omega$ Заметим, что функция, которую мы хотим минимизировать, квадратична относительно переменных $O_p, p \in \Omega$. Для решения задачи минимизации вычислим частные производные по этим переменным и найдем значения переменных, при которых частные производные будут равны нулю. Для $p \in \Omega$: $\frac{\partial{\underset{p, q \in \Omega}{\sum}\; (O_p - O_q - v_{pq})^2}}{\partial O_p} = \underset{q \in N_p}{\sum} 2 (O_p - O_q - v_{pq}) - \underset{q \in N_p}{\sum} 2 (O_q - O_p - v_{qp}) = 2 \underset{q \in N_p}{\sum} 2 (O_p - O_q - v_{pq})$. Приравнивая к нулю, получаем: $|N_p| O_p - \underset{q \in N_p}{\sum} O_q = \underset{q \in N_p}{\sum} v_{pq}$. Для точек, граничащих с $\partial \Omega$: $|N_p| O_p - \underset{q \in N_p \cap \Omega}{\sum} O_q = \underset{q \in N_p \cap \partial \Omega}{\sum} A_q + \underset{q \in N_p}{\sum} v_{pq}$. Решаем систему уравнений и получаем значения $O_p$ для $p \in \Omega$. todo: Поскольку система уравнений sparse symmetric positive-defined, можно использовать следующие итеративные алгоритмы: Gauss-Seidel, V-cycle multigrid. Заметим, что метод Пуассона сдвигает цвета накладываемого изображения и сохраняет свойства градиента (прям всегда? нужно подумоть), туду Another thing that we wish to remark is that even though poisson blending shifts the color of the source image, it still preserves the features of it. In the original source image, f4 is smaller than f3, f5 is greater than f4, and so on, and this also applies to our recovered image. This information was encoded by the gradients of the source image. However, it is also important to realize that poisson blending does not exactly preserve the gradients. In the recovered image, the gradient f3,4 assumes the value 7−4=3, but it was 26−22=4 in the original source image. In the previous section, the gradients of the recovered image were identical to the gradients of the original image. But with poisson blending, the gradients of a completely different image are pasted into another image, and the result of this is that the solver is not always able to recover an image whose gradients exactly match the specified gradients. But the solver tries to find an image whose gradients match as close as possible, and in practice, poisson blending yields good results, which we shall show examples of in the following section.
==Глубокий блендинг==