101
правка
Изменения
Нет описания правки
'''end''' '''for'''
На практике не всегда удобно использовать уравнение описанной выше. В начале обучения, когда <tex>G</tex> плохо настроен дискриминатор <tex>D</tex> может не учитывать объекты, с высокой уверенностью в классификации, так как они сильно отличаются от тренировочного сета, в таком случае <tex>log(1 - D(G(z)))</tex> стагнирует. Чтобы избежать этого, можно вместо минимизации <tex>log(1 - D(G(z)))</tex> максимизировать <tex>log D(G(z))</tex>. На рисунке 3 представлена зависимость получаемого изображения от итерации обучения.
==Проблема запутывания (Проблема связанности характеристик)==
Сложность с генеративно состязательными сетями заключается в том, что непонятно, как им удается определять конкретные различные характеристики, как, например, возраст и пол, и связаны ли между собой эти характеристики.
Генератор хорошо обученной сети $-$ функция
<tex>g : Z \rightarrow X</tex>, где <tex>Z \subseteq \mathbb{R}^{d}</tex> $-$ скрытое пространство размерности <tex>d</tex>, для которого обычно применимо Гауссово распределение в многомерном случае.
<tex>X</tex> $-$ пространство изображений, где у каждого изображения существует набор характеристик вроде возраста или пола. Пусть нам дана функция оценки <tex>f_{S} : X \rightarrow S</tex>, где <tex>S \subseteq \mathbb{R}^{m}</tex> $-$ пространство изображений размерности <tex>m</tex>. Тогда <tex>s = f_{S}(g(z))</tex>, где <tex>z \in Z</tex>, <tex>s \in S</tex> $-$ связь между точкой в скрытом подпространстве и характеристиками получившегося изображения.
Установлено, что при движении между двумя точками <tex>z_1</tex> и <tex>z_2</tex> характеристики меняются постепенно, без скачков. Тогда по этому направлению в $Z$ можно построить гиперплоскость.
Тогда сделаем предположение, при котором для любого бинарного параметра существует гиперплоскость, что все образцы с одной стороны от нее имеют одинаковое значение этого параметра.
Заведем следующую функцию "расстояния":
<tex>d(n, z) = n^{T}z</tex>, где <tex>n \in \mathbb{R}^{d}</tex>, <tex>n</tex> $-$ вектор нормали гиперплоскости.
Данная функция не подходит под определение расстояния из-за наличия отрицательных значений (но знак нам необходим для определения знака параметра характеристики).
Ожидается, что функция оценки $f$ по данному параметру линейно зависит от "расстояния":
<tex>f(g(z)) = \lambda d(n, z)</tex>.
[[File:SubspaceManipulation.png|200px|thumb|right|Рисунок 16. Манипулирование подпространством. Источник:<tex>\href{https://arxiv.org/pdf/1907.10786.pdf}{\text{[x]}}</tex>]]
В таком случае выраженность характеристики зависит от "расстояния" до этой гиперплоскости.
Аналогично происходит и в случае нескольких характеристик:
<tex>f_{S}(g(z)) = \Lambda N^{T}z</tex>, где <tex>\Lambda</tex> - диагональная матрица с линейными коэффициентами <tex>\lambda_{i}</tex> для каждой из характеристик, <tex>N = [n_1, . . . , n_m]</tex> $-$ границы.
В случае если <tex>\Lambda</tex> {{---}} диагональная, то проблемы запутывания нет.
В противном случае проделаем манипуляции в скрытом подпространстве (рис. 16). Проецируя, можно найти такое направление <tex>n_1 - (n_1^{T} - n_2)n_2</tex> в скрытом подспространстве, что вдоль этих направлений у сгенерированных изображений будем изменяться характеристика $1$ в независимости от характеристики $2$.
При слишком большом "расстоянии" от гиперплоскости соответствующая характеристика слишком сильно делает лицо непохожим на изначальное, но это объяснимо нормальным распределением вектора шума.
==Улучшение обучения GAN==
<tex>r</tex> $-$ коэффициент обучения для <tex>\gamma_t</tex>.
==См. также==