Изменения
Нет описания правки
# Докажите, что если существует язык $L \in NEXPC \cap EXP$, то $NEXP = EXP$.
# Пусть задан язык $L$, принадлежащий $NP$. Зафиксируем проверку сертификатов $R(x, y)$. Обозначим как $c(x)$ число сертификатов, которые подходят для данного $x$ (очевидно, если $x \not\in L$, то $c(x) = 0$, а если $x \in L$, то $c(x) \ge 1$). Сведение по Карпу $f$ одного языка к другому, для каждого из которых зафиксирована проверка сертификатов, называется честным (англ. parsimonious), если оно сохраняет $c$, то есть $c(f(x)) = c(x)$. Докажите, что сведение $BH_{1N}$ к $SAT$ в теореме Кука является честным, если в качестве сертификата использовать последовательность недетерминированных выборов, приводящих машину Тьюринга из входа для $BH_{1N}$ к допуску.
# Эффективная BGS. Докажите, что существует язык $B \in EXP$, такой что $P^B\ne NP^B$.
# Докажите, что $DSPACE(n) \ne NP$.
# Формальная система доказательств представляет собой способ записи утверждений, аксиом, правила вывода и способ записи доказательств. Будем считать, что рассматривается достаточно богатая формальная система, в которой можно записывать различные утверждения про программы. Докажите, что язык $\{\langle \varphi, 1^n\rangle|\varphi$ - верное утверждение, имеющее доказательство длиной не больше $n\}$ является $NP$-трудным. Какие свойства надо предъявить к формальной системе, чтобы он являлся $NP$-полным?
# Петя свёл язык $A$ по Карпу к $NP$-полному языку $B$. Учитель утверждает, что из этого не следует, что $A$ является $NP$-полным. Помогите учителю подобрать пример.
# Предположим, что существует $NP$-полный язык, для которого существует решение за $O(n^{C\log_2n})$, где $C$ - константа. Что можно сказать про класс $NP$ в этом случае?
# Верно ли, что если $A \le B$, то $A \in P^B$? В случае, если вы не можете доказать свой ответ, можно привести разумные аргументы в его пользу.
# Верно ли, что если $A \in P^B$, то $A \le B$? В случае, если вы не можете доказать свой ответ, можно привести разумные аргументы в его пользу.
# Сережа дал такое определение $NP$-полноты: язык $L$ является $NP$-полным по Серёже, если $L \in P \Rightarrow P = NP$. Прокомментируйте определение Серёжи.
# Юра дал такое определение класса $NP$: это задачи, который можно решить перебором. Прокомментируйте определение Юры.
# Докажите, что найдется такой оракул $A$ и язык $L \in NP^A$, что $L$ не сводится к $3SAT$ за полином даже, если у сведения есть доступ к оракулу для $A$.
# Докажите, что если $L\in coNP$, то $L^* \in coNP$.