Изменения

Перейти к: навигация, поиск

Список заданий по теории сложности lite 2021

1959 байт добавлено, 13:25, 8 мая 2021
Нет описания правки
# Задача коммивояжера в неориентированном графе. Докажите, что язык $WUHAM = \{\langle G, w\rangle | G $ - взвешенный неориентированный граф, в котором существует гамильтонов путь длины не более $w \}$ является $NP$-полным.
# Задача коммивояжера в неориентированном графе без вершин степени 2. Докажите, что язык $WUHAN = \{\langle G, w\rangle | G $ - взвешенный неориентированный граф, в котором нет вершин степени 2 и существует гамильтонов путь длины не более $w \}$ является $NP$-полным.
# Докажите, что $ZPP = RP \cap coRP$.
# Докажите, что $BPP \subset PS$.
# Докажите, что $RP \subset NP$.
# Обозначим как $PP^+$ как класс языков, для которых существует вероятностная программа $M$, работающая за полином, что если $x \in L$, то $P(M(x) = 1) > 1/2$, а если $x \notin L$, то $P(M(x) = 0) \ge 1/2$. Докажите, что $PP^+ = PP$.
# Докажите, что $NP \subset PP$.
# Докажите, что если $NP \subset BPP$, то $NP = RP$.
# В определении $ZPP$ нет требования, чтобы на любой вероятностной ленте программа завершалась. Докажите, что если добавить это ограничение, определение класса $ZPP$ не поменяется.
# При симуляции $random(n)$ с помощью бросков честной монеты (или абстракции вероятностной ленты) математическое ожидание времени работы $random(n)$ равно $O(\log n)$, но нет ограничения сверху на число бросков. Кажется, что это может испортить определение классов $RP$ или $BPP$, потому что в них время работы программы должно быть ограничено сверху. Докажите, что это не так и можно разрешить конструкции $random(n)$ в вероятностных программах из определения $RP$ или $BPP$, даже если на самом деле в модели вычислений есть доступ к источнику случайности только с распределением честной монеты.
Анонимный участник

Навигация