Изменения
Нет описания правки
# Постройте граф с $n$ вершинами, где каждая вершина имеет степень $d$.
# Докажите, что любой граф, содержащий хотя бы две вершины, имеет две вершины одинаковой степени.
# Докажите, что если в графе число вершин нечетной степени четно.
# Докажите, что если в графе ровно две вершины нечетной степени, то они лежат в одной компоненте связности.
# Обозначим как $\delta(G)$ минимальную степень вершины в графе, как $\Delta(G)$ - максимальную степень вершины в графе. Для заданных $n$ и $k$ постройте граф с $n$ вершинами, в котором $\delta(G) + \Delta(G) = k$.