Изменения

Перейти к: навигация, поиск

Список заданий по ДМ 2022 весна

5828 байт добавлено, 18:02, 2 марта 2022
Нет описания правки
# Предложите метод генерации случайного сочетания из $n$ по $k$ с равновероятным распределением всех сочетаний, если мы умеем генерировать равномерно распределенное целое число от 1 до $t$ для любых небольших $t$ ($t = O(n)$)
# Предложите метод генерации случайного сочетания из $n$ по $k$ с равновероятным распределением всех сочетаний, если мы умеем генерировать равномерно распределенное целое число от 1 до $t$ для любых небольших $t$ ($t = O(n)$), использующий $O(k)$ времени и памяти.
# Улучшить неравенство Маркова в общем случае нельзя. Докажите, что для любого $c > 1$ найдется такая неотрицательная случайная величина $\xi$, что $P(\xi \ge cE\xi) = 1/c$.
# Можно ли подобрать такую неотрицательную случайную величину $\xi$, чтобы для двух различных $c_1 > 1$ и $c_2 > 1$ выполнялось $P(\xi \ge c_iE\xi) = 1/c_i$ ($i \in \{1, 2\}$)?
# Для какого максимального $\alpha$ можно подобрать такую неотрицательную случайную величину $\xi$, чтобы для двух различных $c_1 > 1$ и $c_2 > 1$ выполнялось $P(\xi \ge c_iE\xi) = \alpha/c_i$ ($i \in \{1, 2\}$)?
# Улучшить неравенство Чебышева в общем случае нельзя. Докажите, что для любого $c > 0$ найдется такая отличная от константы случайная величина $\xi$, что $P(|\xi - E\xi| \ge c) = D\xi/c^2$.
# Улучшить неравенство Чебышева нельзя даже для суммы. Докажите, что для любого $c > 0$ найдется такое семейство одинаково распределенных отличных от константы случайных величин $\xi_1, \xi_2, \ldots, \xi_n$, что $P(|\sum\xi_i - \sum E\xi_i| \ge c) = nD\xi/c^2$.
# Оцените вероятность, что значение на игральной кости отличается от матожидания больше чем на 2 с помощью неравенства Чебышева. Насколько точна эта оценка?
# Докажите, что вероятность того, что значения на двух одинаково распределенных нечестных игральных костях совпадает, не меньше $1/6$.
# Найдите дисперсию следующей случайной величины: число бросков честной монеты до $k$-го выпадения 1.
# Петя хочет пойти в кино с вероятностью ровно 1/3, а у него есть только честная монета. Может ли он осуществить свой замысел?
# Петя хочет пойти в кино с вероятностью ровно 1/13, а у него есть только честная монета. Может ли он осуществить свой замысел?
# Решите предудыщее задание для любой дроби $0 \le p/q \le 1$.
# Докажите, что не существует способа для Пети пойти в кино с вероятностью 1/3, используя честную монету, для которого существует конечное $k$, что при любых исходах Петя сделает не более $k$ бросков честной монеты.
# Постройте схему получения вероятности 1/3 с помощью честной монеты, имеющую математическое ожидание числа бросков монеты, равное $2$.
# Постройте схему получения вероятности 1/3 с помощью честной монеты, имеющую минимальное математическое ожидание числа бросков. Докажите оптимальность вашей схемы.
# Дана нечестная монета. Придумайте метод определения, какое значение выпадает с большей вероятностью. Вероятность того, что этот способ ошибся, должна быть не больше $0.01$. Оцените количество бросков, которое потребуется, в зависимости от того, насколько $p$ отличается от $1/2$.
# Петя и Вася играют в игру. Они бросают честную монету, и выписывают результаты бросков. У каждого из игроков есть критерий победы, выигрывает тот, чей критерий наступит раньше. Петя выигрывает в тот момент, когда результаты последних двух бросков равны 11. Вася выигрывает, когда результаты последних двух бросков равны 00. С какой вероятностью Петя выиграет?
# Петя и Вася играют в игру. Они бросают честную монету, и выписывают результаты бросков. У каждого из игроков есть критерий победы, выигрывает тот, чей критерий наступит раньше. Петя выигрывает в тот момент, когда результаты последних трех бросков равны 001. Вася выигрывает, когда результаты последних трех бросков равны 010. С какой вероятностью Петя выиграет?
# Можно ли сделать игру в предыдущем задании честной (чтобы вероятности выигрышей оказались равны $1/2$), используя нечестную монету?
Анонимный участник

Навигация