Изменения

Перейти к: навигация, поиск

Список заданий по ТИгр 2022 весна

8519 байт добавлено, 19:14, 1 апреля 2022
Нет описания правки
# Приведите пример системы линейных неравенств с двумя переменными, у задачи линейного программирования для которой существует оптимальное решение для любой целевой функции.
# Приведите пример системы линейных неравенств с двумя переменными, у задачи линейного программирования для которой существует единственное оптимальное решение для любой целевой функции.
# Найдите оптимальную смешанную стратегию для обоих игроков в игре на матрице $\left(\begin{array}{cc}2&3\\-1&2\end{array}\right)$
# Найдите оптимальную смешанную стратегию для обоих игроков в игре на матрице $\left(\begin{array}{cc}-1&1\\1&-1\end{array}\right)$
# Найдите оптимальную смешанную стратегию для обоих игроков в игре на матрице $\left(\begin{array}{cc}-1&2\\1&-2\end{array}\right)$
# Найдите оптимальную смешанную стратегию для обоих игроков в игре на матрице $\left(\begin{array}{cc}-2&2\\1&-1\end{array}\right)$
# Запишите игру "камень-ножницы-бумага" как матричную игру. Найдите оптимальные смешанные стратегии для обоих игроков.
# Найдите все точки равновесия по Нэшу в биматричной игре $\left(\begin{array}{cc}(5, 2)&(-1, -1)\\(-1,-1)&(2,5)\end{array}\right)$
# Обобщите понятие антагонистичкой игры на трех игроков. Пусть игра бескоалиционная. Запишите соответствующую задачу линейного программирования.
# Выборы в Флатландии проходят по следующей схеме. Каждый избиратель имеет список предпочтения кандидатов. В каждом туре каждый участник избиратель за того из оставшихся кандидатов, который в его списке идет на самом высоком месте. После каждого тура кандидат, набравший минимальное число голосов, выбывает, если ничья, выбывает случайный из проигравших. Приведите пример выборов для 3 кандидатов, где в указанной схеме будет избран кандидат, который не является первым в списке предпочтений ни у кого из избирателей.
# Выборы в Флатландии проходят по следующей схеме. Каждый из $n$ избирателей имеет список предпочтения кандидатов. В каждом туре каждый избиратель голосует за того из оставшихся кандидатов, который в его списке идет на самом высоком месте. После каждого тура кандидат, набравший минимальное число голосов, выбывает, если ничья, выбывает случайный из проигравших. Для какого максимального $0 \le k \le 1$ в результате выборов для 3 кандидатов может выиграть кандидат, который находится на последнем месте в списках предпочтения у $kn$ избирателей?
# Выборы в Флатландии проходят по следующей схеме. Каждый из $n$ избирателей имеет список предпочтения кандидатов. В каждом туре каждый избиратель голосует за того из оставшихся кандидатов, который в его списке идет на самом высоком месте. После каждого тура кандидат, набравший минимальное число голосов, выбывает, если ничья, выбывает случайный из проигравших. Для какого максимального $1 \le k \le m$ в результате выборов для $m$ кандидатов может выиграть кандидат, который находится не выше $k$-го места в списке предпочтений у всех избирателей?
# Выборы в Флатландии проходят по следующей схеме. Каждый избиратель имеет список предпочтения кандидатов. В каждом туре каждый участник избиратель за того из оставшихся кандидатов, который в его списке идет на самом высоком месте. После первого тура остаются два кандидата, набравшие максимальное число голосов. Приведите пример выборов для 3 кандидатов, где в указанной схеме будет избран кандидат, который не является первым в списке предпочтений ни у кого из избирателей.
# Выборы в Флатландии проходят по следующей схеме. Каждый избиратель имеет список предпочтения кандидатов. В каждом туре каждый участник избиратель за того из оставшихся кандидатов, который в его списке идет на самом высоком месте. После первого тура остаются два кандидата, набравшие максимальное число голосов. того из оставшихся кандидатов, который в его списке идет на самом высоком месте. После каждого тура кандидат, набравший минимальное число голосов, выбывает, если ничья, выбывает случайный из проигравших. Для какого максимального $0 \le k \le 1$ в результате выборов для 3 кандидатов может выиграть кандидат, который находится на последнем месте в списках предпочтения у $kn$ избирателей?
# Выборы в Флатландии проходят по следующей схеме. Каждый избиратель имеет список предпочтения кандидатов. В каждом туре каждый участник избиратель за того из оставшихся кандидатов, который в его списке идет на самом высоком месте. После первого тура остаются два кандидата, набравшие максимальное число голосов. Для какого максимального $1 \le k \le m$ в результате выборов для $m$ кандидатов может выиграть кандидат, который находится не выше $k$-го места в списке предпочтений у всех избирателей?
# В аукционе принимает участие три агента, ценности предмета аукциона для них $a$, $b$ и $c$. Ценности других агентов не известны. Каждый агент делает ставку, выигрывает тот, кто поставил максимальную ставку, но платит он цену, равную минимальной ставке. Проанализируйте возможные стратегии для этого аукциона.
# В аукционе принимает участие три агента, ценности предмета аукциона для них $a$, $b$ и $c$. Все агенты знают все три числа. Каждый агент делает ставку, выигрывает тот, кто поставил максимальную ставку, но платит он цену, равную минимальной ставке. Проанализируйте возможные стратегии для этого аукциона.
Анонимный участник

Навигация