Изменения

Перейти к: навигация, поиск

Локальная теорема о неявном отображении

20 868 байт добавлено, 19:21, 4 сентября 2022
м
rollbackEdits.php mass rollback
1) [[Безусловный экстремум функции многих переменных|<<]] [[Математический_анализ_1_курс#.D0.93.D0.BB.D0.B0.D0.B2.D0.B0_V_.D0.A0.D1.8F.D0.B4.D1.8B|>> home]] ==Принцип сжатия Банаха== Принцип сжатия будем излагать для нормированных пространств, хотя он без изменения переносится на метрические пространства.  {{Определение|definition=Пусть <tex>X</tex> {{- --}} B-пространство; пусть . Пусть <tex>\overline V</tex> {{---}} замкнутый шар в <tex>X</tex>; .<br> <tex>\mathcal{T\colon} : \overline V \to\overline V</tex>. Оно называется сжатием {{---}} '''сжатие''' на этом шаре<tex>V</tex>, если <tex>\exists q \in (0;1); \ \forall x',x'' \in \overline V</tex> <tex> : \| \mathcal{T}x''-\mathcal{T}x' \| \le q \|x''-x'\|</tex>.}} {{Теорема|author=Банах|statement=У любого сжимающего отображения существует ровно одна неподвижная точка <tex>x^*=\mathcal{T}x^*</tex>.|proof=<tex>\forall x_0 \in \overline V:\ x_{n+1}=\mathcal{T}x_n</tex>. Тогда <tex>\|x_{n+1}-x_n\| = \|\mathcal{T}x_n-\mathcal{T}x_{n-1}\|\le q \|x_n-x_{n-1}\| \leq \ldots \leq q^n \|x_1-x_0\|</tex> Рассмотрим ряд<tex>x_1+\sum\limits_{k=1}^\infty (x_{k+1}-x_k)</tex> Выкинем первое слагаемое и замажорируем этот ряд геометрической прогрессией. <tex>\sum\limits_{k=1}^\infty \|x_{k+1}-x_k\| \le \|x_1-x_0\|\sum\limits_{k=1}^\infty q^k</tex>, такое<tex>0<q<1</tex>. Последний ряд сходится и ряд из норм тоже сходится.  По свойствам рядов определим <tex>S=x_1+\sum\limits_{k=1}^\infty (x_{k+1}-x_k)</tex>. <tex>S_n=x_{n+1}</tex>. Если <tex> S_n \to S</tex>, то <tex>x_n \to S</tex>. Но любое сжатие непрерывно (в определении равномерной непрерывности подставить <tex>\delta = \varepsilon</tex>). Это позволяет в <tex>x_{n+1}=Tx_n</tex> перейти к пределу — <tex>S=TS</tex>. Получили неподвижную точку <tex> S </tex>. Допустим теперь, что существуют две различных неподвижных точки: Если <tex>Tx'=x', Tx''=x''</tex>, то составим норму их разности: <tex>\|x''-x'\|=\| Tx''-Tx' \| \le q \|x''-x'\|</tex>и при <tex>\|x''-x'\| \ne 0</tex> <tex>q \ge 1</tex>, что противоречит условию. Поэтому <tex>\|x''-x' \|= 0</tex>, следовательно, <tex>x''=x'</tex>.}} == Теорема о неявном отображении ==  Пусть <tex>\overline x \in V \subset \mathbb{R}^n, \overline y \in W \subset \mathbb{R}^m</tex>, тогда рассмотрим <tex>V\times W=\{(\overline x, \overline y) \in \mathbb R^{n+m},\overline x \in V, \overline y \in W\}</tex>. <tex>f\colon V(\overline {x_0})\times W(\overline {y_0}) \to \mathbb{R}^m</tex>, <tex>f(x_0,y_0)=0^m</tex>. Существуют ли такие <tex>\delta_1,\delta_2>0</tex>, что для любого <tex>\overline x\in V_{\delta_1}(\overline{x_0})</tex> существует единственный <tex> \overline y\in W_{\delta_2}(\overline{y_0})\colon f(\overline x,\overline y)=0^m</tex>? Если это так, то, в силу единственности y, определяем <tex>\overline y = \phi(\overline x)</tex> на <tex>V_{\delta_1}(\overline{x_0})</tex> так, чтобы <tex>f(\overline x,\phi(\overline x))=0^m</tex>. <tex>\phi</tex> — неявное отображение, определяется как <tex>f(\overline x,\overline y)=0^m,~(x_0,y_0)\colon f(\overline{x_0},\overline{y_0})=0^m</tex>  Пример, единичная окружность: <tex>x,y\in\mathbb{R},f(x,y)=x^2+y^2-1.~f(x,y)=0\Longleftrightarrow x^2+y^2=1</tex> В малых окрестностях начальных данных вертикаль, проведённая через <tex>x</tex>, будет давать соответствующий единственный <tex>y</tex>. Если решать задачу вне окрестности <tex>y_0</tex>, получится 2 <tex>y</tex>, теряется единственность <tex>y</tex>. Именно поэтому крайне важно указывать окрестности, в которых мы ищем отображения. <tex>y=\sqrt{1-x^2};y=\pm\sqrt{1-x^2}</tex>. Сейчас мы установим условия, при которых неявное отображение будет существовать: <tex>\overline z = f(\overline x,\overline y).~\overline x \in \mathbb R^n;~y,z\in \mathbb R^m.~f_{\overline y}'</tex> — производная отображения <tex>f</tex>, при фиксированном <tex>x</tex> и варьирующемся <tex>y</tex>. <tex>f_{\overline y}'</tex> зависит и от <tex>\overline x</tex>, и от <tex>\overline y</tex>. <tex>f_{\overline y}'</tex> — линейный оператор, поэтому непрерывность <tex>f_{\overline y}'</tex> понимается в метрике линейного оператора: {{Определение|definition=Непрерывность линейного оператора: <tex>\forall \varepsilon >0 \exists \delta > 0\colon~\|\overline{\mathcal{4}x}\|,\|\overline{\mathcal{4}y}\|<\delta\Rightarrow\|f_{\overline y}'(\overline x + \overline{\mathcal{4}x},\overline y + \overline{\mathcal{4}y})-f_{\overline y}'(\overline x,\overline y)\|<\varepsilon</tex>}} <tex>f_{\overline y}'(\overline x,\overline y)</tex> — матрица, размером <tex>m\times m</tex>. Оператор непрерывно обратим в <tex>(\overline x,\overline y) </tex>, то есть, у матрицы этого оператора существует обратная (её детерминант не равен нулю). {{Теорема|about=О неявном отображении|statement=Пусть для <tex>f</tex> поставлена задача о неявном отображении, с начальными данными <tex>(x_0,y_0)</tex>. Известно, что в окрестности начальных данных<tex>f_{\overline y}'</tex> непрерывно зависит от <tex>\overline x,\overline y</tex> и непрерывно обратима в <tex>(x_0,y_0)</tex>. Тогда в некоторой окрестности начальных данных неявное отображение существует.|proof=Доказательство разбиваем на 2 этапа (и на экзамене они тоже будут спрашиваться по отдельности): <b>1 этап:</b>  Пусть <tex>\Gamma_0=(f_{\overline y}'(\overline{x_0},\overline{y_0}))^{-1}</tex> Промежуточное утверждение: <tex>f(\overline x, \overline y)=0^m \Longleftrightarrow\ \overline y = \overline y - \Gamma_0 f(\overline x, \overline y)</tex>.  Проверим равносильность:  <tex> \Longrightarrow </tex> Пусть <tex>f(\overline x, \overline y) = 0</tex>. <tex>\Gamma_0 f(\overline x, \overline y)=\Gamma_0(0^m)=0,~\overline y = \overline y</tex> — верное в любом случае уравнение. <tex> \Longleftarrow </tex> Пусть теперь <tex>\overline y = \overline y - \Gamma_0 f(\overline x, \overline y)</tex>. Тогда <tex>\Gamma_0 f(\overline x, \overline y)=0^m. \Gamma_0=(f_{\overline y}'(\overline{x_0},\overline{y_0}))^{-1}</tex>, следовательно, <tex>det \Gamma_0 \ne 0</tex>, поэтому соответствующая однородная система уравнений будет иметь только тривиальные решения и <tex>f(\overline x, \overline y)=0^m</tex> Пусть <tex>T(\overline x, \overline y) = \overline y - \Gamma_0 f(\overline x, \overline y)</tex>, тогда <tex>\overline y = T(\overline x,\overline y)</tex> для <tex> f(x, y) = 0 </tex>. Для фиксированного <tex> x </tex> получаем задачу на неподвижную точку для отображения <tex>T</tex> по переменной <tex>\overline y</tex>. Воспользуемся для решения принципом сжатия Банаха. Существует ли (в определённых начальных данных) коэффициент сжатия? <tex>T_{\overline y}' = J - \Gamma_0 f_{\overline y}';~\Gamma_0 f_{\overline y}'(\overline{x_0},\overline{y_0})=J</tex> по определению <tex> \Gamma_0 </tex>. Значит, <tex>T_{\overline y}'(\overline{x_0},\overline{y_0})=0</tex>. По условию, <tex>f</tex> зависит от <tex>\overline x, \overline y</tex>, следовательно, <tex>T'</tex> — тоже. Тем самым, в определении непрерывности полагаем <tex> \varepsilon=\frac 12,\exists \delta>0 </tex> <tex> \|\overline{\mathcal 4 x_0}\|,\|\overline{\mathcal 4 y_0}\| \le \delta \Rightarrow \| T_{\overline y}'(\overline{x_0}+\overline{\mathcal 4{x_0}},\overline{y_0}+\overline{\mathcal 4{y_0}})\| \le \frac 12</tex> Возьмем <tex>V_{\delta}(\overline{x_0}),\ W_{\delta}(\overline{y_0})</tex> такие, что при <tex>~\forall \overline y',\overline y'' \in W_{\delta}(\overline{y_0}),~\forall\overline x\in V_{\delta}(\overline{x_0}):</tex> <tex> \| T_{\overline y}'(\overline x, \overline y) \| \le \frac 12 </tex> Тогда по неравенству Лагранжа <tex>\|T(\overline x,\overline y'')-T(\overline x,\overline y')\| \le \sup\limits_{\overline z \in [y',y'']}\|T_{\overline y}'(\overline x,\overline z)\|\|\overline y''-\overline y'\|</tex>. Но по выбору шаров этот <tex>\sup \le \frac 12</tex> и, таким образом, в наших условиях <tex>\|T(\overline x,\overline y'')-T(\overline x,\overline y')\| \le \frac 12 \|\overline y''-\overline y'\|</tex>. <b>2 этап:</b> На первом этапе найден коэффициент сжатия: <tex>\frac 12</tex>. Если проверить для <tex>T</tex> условия теоремы Банаха по <tex>\overline y</tex> в пределах некоторых окрестностей начальных данных, то у <tex>T</tex> окажется единственная неподвижная точка, следовательно, она и будет значением неявного отображения, и теорема будет доказана. <tex>\forall\overline x\in V_{\delta}(\overline{x_0}),~\forall \overline y, \in W_{\delta}(\overline{y_0})</tex> <tex>\overline{y_0}=T(\overline{x_0},\overline{y_0})</tex> (<tex>x_0,y_0</tex> — начальные данные). Тогда: <tex> \|T(\overline x,\overline y)-y_0\|=\|T(\overline x,\overline y)-T(\overline {x_0},\overline {y_0})\| = </tex> <tex> = \|(T(\overline x,\overline y)-T(\overline x,\overline {y_0}))+(T(\overline x,\overline {y_0})-T(\overline {x_0},\overline {y_0}))\| \le </tex> <tex> \le\|T(\overline x,\overline y)-T(\overline x,\overline {y_0})\|+\|T(\overline x,\overline {y_0})-T(\overline {x_0},\overline {y_0})\|\le </tex> <tex> \le \frac 12 \|\overline y-\overline{y_0}\|+\|T(\overline x,\overline {y_0})-T(\overline {x_0},\overline {y_0})\|</tex> По непрерывности, <tex>T</tex> вторая норма разности стремится к 0 при <tex> \overline x \rightarrow \overline {x_0} </tex>. Полагая в определении непрерывности <tex>\varepsilon=\frac{\delta}2</tex> (<tex>\delta</tex> у нас уже было выбрано), подбираем <tex>\delta':0<\delta'<\delta</tex>, так, чтобы <tex>\|\overline x - \overline{x_0}\|\le\delta' \Rightarrow \|T(\overline x,\overline{y_0})-T(\overline {x_0},\overline{y_0})\|\le\frac{\delta}2</tex>. <tex>\delta'</tex> не зависит от <tex>y</tex>! <tex>\forall \overline x\in V_{\delta'}(\overline{x_0}),~\forall \overline y, \in W_{\delta}(\overline{y_0}): \|T(x,y)-y_0\|\le\frac 12\|y-\overline{y_0}\|+\frac 12\delta\le\frac 12\delta+\frac 12\delta=\delta:T(x,y)\in W_{\delta}(\overline{y_0})</tex> <tex>\forall\overline x\in V_{\delta}(\overline{x_0}),~\forall \overline y, \in W_{\delta}(\overline{y_0}).~T(\overline x,\cdot)\colon W_{\delta}(\overline{y_0})\to W_{\delta}(\overline{y_0})</tex> является сжатием с <tex>q=\frac 12</tex>. Значит, по теореме Банаха <tex>\exists y^*\in W_{\delta}(\overline{y_0}):\overline y^*=T(\overline x,\overline y^*)\Longleftrightarrow f(\overline x,\overline y^*)=0^m</tex>. В силу единственности такой точки, неявное отображение определено. Пыщь-пыщь, щастье-радость!}} Приведем пример использования неявного отображения. Дана система уравнений: <tex>\begin{cases} f(x,y,\alpha)=0\\ g(x,y,\alpha)=0 \end{cases}</tex>  Если существуют <tex>(x_0,y_0,\alpha_0)</tex>, такие, что  <tex>\begin{cases} f(x_0,y_0,\alpha_0)=0\\ g(x_0,y_0,\alpha_0)=0 \end{cases}</tex> А также <tex>\begin{vmatrix} \frac{\partial f}{\partial x}(x_0,y_0,\alpha_0) & \frac{\partial f}{\partial y}(x_0,y_0,\alpha_0) \\ \frac{\partial g}{\partial x}(x_0,y_0,\alpha_0) & \frac{\partial g}{\partial y}(x_0,y_0,\alpha_0)\end{vmatrix}\ne 0</tex>, и указанные выше частные производные непрерывны, то, по только что доказанной теореме, можно утверждать, что «возмущённая система уравнений»:  <tex>\begin{cases} f(x_0,y_0,\alpha_0+\mathcal 4 \alpha)=0\\ g(x_0,y_0,\alpha_0+\mathcal 4 \alpha)=0 \end{cases};</tex> при некоторых <tex>\delta > 0, |\mathcal 4 \alpha|,|x-x_0|,|y-y_0|<0</tex>, <tex>\forall\alpha</tex> будет иметь единственное решение по переменным <tex>\overline x,\overline y</tex>. Выяснить этот факт для конкретной системы некоторым прямым методом, как правило, невозможно. ===Важное следствие===
{{Теорема
|statement=
У любого сжимающего отображения существует неподвижная точка Пусть <tex>x\exists T\colon\mathbb R^*=Txn \to\mathbb R^*n ; det(T'(\overline {x_0}))\ne 0</tex>.Тогда это отображение в окрестности <tex> \overline {x_0} </tex>локально обратимо.
|proof=
<tex>\forall x_0 \in \overline V x_{n+1}y =Tx_n</tex>. Тогда <tex>T(\|x_{n+1}-x_noverline x),\|=\|Tx_n-Tx_overline {n-1y_0}\|\le q \|x_n-x_{n-1}\|\le q^n \|x_1-x_0</tex><br><tex>x_1+\sum\limits_{k=1}^\infty T(x_{k+1}-x_k),\sum\limits_overline {k=1}^\infty \|x_{k+1}-x_k\| \le \|x_1-x_0\|\sum\limits_{k=1}^\infty q^k, 0<q<1.)</tex><br>. Последний ряд сходится и ряд из норм тоже сходится. По свойствам рядов определим Чтобы обратить <tex>S=x_1+\sum\limits_{k=1}^\infty (x_{k+1}-x_k)T</tex>. , надо в первом равенстве полагать <tex>S_n=x_{n+1}x</tex>. Если неизвестным, а <tex> S_n \to Sy</tex>— заданным. Мы хотим доказать, то что решение у такого уравнения обязательно будет (всё в некоторых окрестностях начальных данных). Рассмотрим <tex>x_n f(\to Soverline x, \overline y)=\overline y - T(\overline x),f(\overline x, \overline y)=0^n</tex>. Но любое сжатие непрерывно. Это позволяет в  <tex>x_T^{n+-1}=Tx_n</tex> перейти к пределу неявное отображение. Локальная обратимость <tex>S=TST</tex>. Если определена непрерывностью <tex>Tx'=x', Tx''=x''T</tex>, то составим норму их разности: непрерывностью соответствующих частных производных и тем фактом, что <tex>f'_{\|overline x''-}(\overline x',\|overline y)=\|Tx''-TxT'\| \le q\|(x''-x'\|). </tex> и при  <tex>det(T'(\|x''-x' overline {x_0}))\ne 0</tex> <tex>q \ge 1</tex> — противоречие. <tex>Rightarrow det(f'_{\|overline x''-x' = }(\overline {x_0})) \ne 0\Rightarrow</tex>условия теоремы о неявном отображении выполнены, следовательно, и <tex>\|x''-x'\|T </tex><br>локально обратимо.
}}
 
То, что мы установили — нетривиальное обобщение стандартного одномерного факта:
 
Пусть <tex>y=f(x),f'(x_0)\ne 0,f'(x)</tex> — непрерывна.
 
Если <tex>f'(x_0)>0 \Rightarrow \exists \delta > 0: |x-x_0|\le \delta \Rightarrow f'(x)>0</tex>.
 
Тогда на отрезке <tex>[x_0-\delta;x_0+\delta]~f</tex> возрастает, и у неё существует обратная функция.
 
===Задача об условном экстремуме===
 
Ещё одним возможным приложением неявных отображений может служить задача об условном экстремуме.
 
<tex>z=f(\overline x, \overline y),~\overline x=(x_1,\dots x_n),~\overline y=(y_1,\dots y_m)</tex>. Пусть заданы «уравнения связи» в количестве m:
 
<tex>\begin{cases} g_1(\overline x,\overline y)=0\\
g_2(\overline x,\overline y)=0\\
\dots\\
g_m(\overline x,\overline y)=0 \end{cases};</tex>
 
<tex>(\overline{x_0},\overline{y_0})</tex> — '''условный максимум''' функции <tex>f</tex>, если для всех <tex>\overline x \approx \overline{x_0},~\overline y \approx \overline{y_0}</tex> и <tex>(\overline x,\overline y)</tex>, удовлетворяющих уравнениям связи, выполняется неравенство <tex>f(\overline x,\overline y)\le f(\overline {x_0},\overline {y_0})</tex>. Если же <tex>f(\overline x,\overline y)\ge f(\overline {x_0},\overline {y_0}),~(\overline{x_0},\overline{y_0})</tex> — '''условный минимум'''.
 
 
Допустим все <tex> g_i </tex>, как и их частные производные — непрерывны, и матрица Якоби должна быть обратимой. Тогда <tex>\overline y</tex> выражается через <tex>\overline x</tex> в некоторой окрестности <tex>(\overline {x_0},\overline {y_0})</tex>.
 
<tex>\overline y=\phi(\overline x),\ \overline z=f(\overline x,\phi(\overline x))</tex>. Мы получили задачу на безусловный экстреммум для <tex>\overline z</tex>. Т.к. практически неявно отображающую формулу не найти, то можно пытаться составлять некоторую систему соотношения для точек, подобранных для условного экстремума, исходя из инвариантности дифференциалов n-го порядка. По этой инвариантности необходимые условия экстремума:
 
<tex>dz=0</tex>
 
<tex>\sum\limits_{j=1}^n \frac {\partial f}{\partial x_j}(\overline x,\overline y)dx_j+\sum\limits_{i=1}^m \frac {\partial f}{\partial y_i}(\overline x,\overline y)dy_i = 0\qquad (*)</tex>
 
Но так как <tex>\overline y=\phi(\overline x)</tex>, то, в отличие от безусловного экстремума, в котором мы могли бы все частные производные приравнять к нулю и получить систему, мы так решать не можем, ибо <tex>dy_i</tex> зависит от <tex>dx_1,\dots dx_n</tex>. Но, в отличие от <tex>\phi</tex>, эту зависимость можно найти явно. У нас должны выполняться следующие условия:
 
<tex>g_k(\overline x,\overline y)=0, k=\overline{1,m}</tex>
 
<tex>\sum\limits_{j=1}^n \frac {\partial g_k}{\partial x_j}dx_j+\sum\limits_{i=1}^m \frac {\partial g_k}{\partial y_i}dy_i = 0</tex>
 
В результате мы получаем СЛАУ для зависимости дифференциалов. Её матрицей будет матрица Якоби <tex>g'_{\overline y}(\overline x,\overline y)</tex>. Раз она обратима в <tex>(x_0,y_0)</tex>, то по непрерывности она будет обратима в окрестности этой точки, следовательно, <tex>dy</tex> можно выразить через <tex>dx</tex>, формулы будут линейны.
 
<tex>dy_1=\sum\limits_{j=1}^n A_{1j}dx_j</tex>. Тогда, подставляя эти форулы в <tex>(*)</tex>, получим <tex>\sum\limits_{j=1}^n B_j dx_j=0 \Rightarrow \forall j : B_j = 0</tex>, так как дифференцируются независимые переменные.
 
Мы получили систему уравнений для полученных точек, похожих на условный экстремум; которую надо решать вместе с уравнениями связи.
 
На самом деле, этому можно придать более удобную форму, придуманную Лагранжем (метод множителей Лагранжа) (но математической новизны в нём нет!)
 
'''Метод множителей Лагранжа:'''
 
<tex>F(\overline x,\overline y,\overline {\lambda})=f(\overline x,\overline y)+\sum\limits_{k=1}^m \lambda_k g_k(\overline x,\overline y).</tex> Далее составляем систему соотношений так, будто для <tex>F</tex> мы стали искать безусловный экстремум:
 
<tex>\begin{cases} \frac {\partial F}{\partial x_j}=0\\
\frac {\partial F}{\partial y_i}=0\\
\frac {\partial F}{\partial \lambda_k}=0 \Longleftrightarrow g_k(\overline x,\overline y)=0\end{cases};</tex>
 
Если всё это раскрыть, получим то, о чём мы говорили выше, но эта запись более компактна.
 
[[Безусловный экстремум функции многих переменных|<<]] [[Математический_анализ_1_курс#.D0.93.D0.BB.D0.B0.D0.B2.D0.B0_V_.D0.A0.D1.8F.D0.B4.D1.8B|>> home]]
[[Категория: Математический анализ 1 курс]]
1632
правки

Навигация