Изменения

Перейти к: навигация, поиск
Нет описания правки
}}
{{Лемма
|statement = <tex>M = \langle X, I \rangle</tex> — матроид, <tex> f \colon X \to Y</tex>. Тогда <tex>M_1 = \langle Y, I_1 = \mathcal {f} f(A) \mid A \in I \mathcal {g} \rangle </tex> является матроидом.
|proof =
Докажем аксиомы независимости для <tex> I_1 </tex>.
2. <tex>B \subset A, A \in I_1 \Rightarrow B \in I_1</tex>
<tex>A \in I_1</tex>, значит <tex>\mathcal {9} S, S \in I</tex>, т.ч. <tex> A = f(S)</tex>. <tex>B = f(S \setminus f^{-1} (A \setminus B)), (S \setminus f^{-1} (A \setminus B)) \subset S \Rightarrow (S \setminus f^{-1} (A \setminus B)) \in I</tex>. Значит <tex>B \in I_1</tex>.
3. Пусть <tex> A \in I_1, A = f(S), B \in I_1, B = f(T), \mid A \mid > \mid B \mid </tex>. Докажем, что <tex> \mathcal {9} y \in A \setminus B, B \cup \mathcal{f} y \mathcal {g} \in I_1</tex>
Анонимный участник

Навигация