Изменения

Перейти к: навигация, поиск

Фибоначчиева куча

5552 байта добавлено, 19:15, 7 июня 2011
Нет описания правки
{{Лемма
|statement=
Фибоначчиево дерево ранга с вершиной степени <tex> k </tex> содержит не менее <tex> F_k </tex> (<tex> k </tex> число Фибоначчи) вершин
|proof=
Для рангов 0 и 1 соответствующие деревья содержат 1 вершинуне менее одной вершины, <tex> F_0 \ge 1, F_1 \ge 1 </tex>.
Рассмотрим дерево ранга степени <tex> k </tex>
Оно в худшем случае (удален ребенок ранка <tex> k - 1 </tex>) содержит <tex> 1 + F_1 + F_2 + ... + F_{k-2} </tex> вершин.
}}
Поскольку <tex> F_k = \Omega(\varphi^k) </tex>, где <tex> \varphi = \frac {1 + \sqrt 5}2 </tex>, то высота фибоначчиева дерева максимальная степень вершины в фибоначчиевой куча с <tex> N </tex> вершинами есть <tex> O(logN) </tex>.
Каждая вершина <tex> x </tex> знает своего родителя (<tex> p[x] </tex>) и какого-нибудь своего ребенка(<tex> child[x] </tex>).
== Потенциал ==
Введем потенциал фибоначчиевой кучи <tex> \Phi(H) = C(t[H] + 2m[H] ) </tex>, как количество элементов в корневом списке (<tex> t[H] </tex>) прибавить удвоенное количество вершин с <tex> mark[x] == true \, (m[H]) </tex>. На языке метода предоплаты это выглядит следующим образом: возле каждого корня лежит одна монета, а возле каждой вершины, у которой удалили ребенка, лежит две монеты.
== Make_heap Создание кучи ==
Создается новый пустой корневой список, в <tex> min[H] </tex> устанавливается значение <tex> null </tex>. Реальное время работы - <tex> O(1) </tex>.
== Merge Слияние ==
Слияние двух фибоначчиевых куч происходит просто: объединяем списки этих куч в один, релаксируем минимум. Реальное время работы - <tex> O(1) </tex>. Амортизированное время работы - также <tex> O(1) </tex>, поскольку, при объединении двух куч в одну, потенциалы обеих куч суммируются, итоговая сумма потенциалов не изменяется, <tex> \Phi_{n + 1} - \Phi_n = 0 </tex>.
== Insert Вставка элемента ==
Вставка элемента в фибоначчиеву кучу также тривиальна: создается новая куча из одного элемента и сливается с текущей. Амортизированная стоимость операции: 1 (создание кучи) + 2 (слияние куч + релаксация минимума) + 1(изменение потенциала) = 4.
== Extract_min Извлечение минимума ==
Первая рассматриваемая операция, в ходе которой меняется структура кучи. Здесь используется вспомогательная процедура Consolidate("уплотнение" кучи). Возьмем указатель на <tex> min[H] </tex>, удалим эту вершину. Ее поддеревья (их не более, чем <tex> D[H] </tex>) все положим в корневой список. Теперь вызываем процедуру <tex> Consolidate </tex>.
=== "Уплотнение" (Consolidate ) ===
Данная процедура принимает кучу, и делает из нее кучу, в корневом списке которой <tex> O(D[H}]) </tex> вершин.
Для этого возьмем массив списков указателей на корни деревьев <tex> A[0..D[H]] </tex>, где <tex> D[H] </tex> - максимальная степень вершины в текущем корневом списке. Далее мы увидим, что <tex> D[H] = O(logN) </tex>.
Учетная стоимость <tex> Consolidate </tex> равна <tex> O(D[H]) </tex>. Докажем это:
Пусть изначально в корневом списке было <tex> r </tex> вершин. Тогда в ходе операции <tex> Consolidate </tex> мы сделали <tex> O(r) </tex> слияний деревьев. Но эти <tex> O(r) </tex> слияний скомпенсируются уменьшением потенциала <tex> t_i + \Phi_i - \Phi_{i - 1} = r + C(O(D[H]) - r) = O(D[H]) </tex>. Остальных действий будет также <tex> O(D[H]) </tex>. Таким образом, учетная стоимость <tex> Consolidate: \, O(D[H]) </tex>.
== Decrease_key ==На языке метода предоплаты: Положим у каждой вершины-ребенка удаленной монету. Это <tex> O(D[H]) </tex> действий. Теперь: у каждой вершины в корневом списке лежит монета, потратим ее на то, чтобы провести процедуру <tex> Consolidate </tex>. Получили новый корневой список, снова раздаем монеты каждой вершине. Итого <tex> O(D[H]) + O(D[H]) </tex> действий.
Основная идея: хотим, чтобы учетная стоимость данной операции была <tex> O(1) </tex>. == Уменьшение ключа ==
- Основная идея: хотим, чтобы учетная стоимость данной операции была <tex> O(1) </tex>. Хотим, чтобы вершина не всплывала до корня. Для этого, при удобном случае будем вырезать поддерево полностью и перемещать его в корневой список. Итак, сам алгоритм: # Проверяем, если новое значение ключа все же меньше значения ключа родителя, то все хорошо, и мы выходим.# Иначе, вырезаем дерево с текущей вершиной в корневой список, и производим каскадное вырезание родителя.  === Вырезание вершины === При вырезании вершины мы удаляем ее из списка детей своего родителя, уменьшаем <tex> degree[p[x]] </tex> и снимаем пометку с текущей вершины (<tex> mark[x] = false </tex>). === Каскадное вырезание === Перед вызовом каскадного вырезания нам известно, что перед этим мы удалили ребенка у этой вершины. Если <tex> mark[x] == false </tex>, то мы ставим эту пометку <tex> true </tex> и заканчиваем. В противном случае, вырезаем текущую вершину, и запускаем каскадное вырезание от родителя. Докажем, что амортизированное время работы операции "уменьшение ключа" есть <tex> O(1) </tex>. Поскольку в процедуре нет циклов, ее время работы определяется лишь количеством рекурсивных вызовов каскадного вырезания. Пусть мы вызвали процедуру каскадного вырезания <tex> k </tex> раз. Тогда вершин с пометкой <tex> mark[x] == true </tex> стало на <tex> k </tex> меньше, а в корневом списке прибавилось <tex> k </tex> новых вершин. Итого, время работы будет: <tex> O(k) + \Phi_i - \Phi_{i - 1} = O(k) + C(k - 2 * k + O(1)) </tex>. Теперь, подбирая соответствующую константу в потенциале, можем добиться того, чтобы амортизированное время работы этой процедуры стало <tex> O(1) </tex> На языке метода предоплаты: Покажем, что взяв в начале 4 монеты, нам хватит этого для выполнения данной операции. Возьмем 4 монеты перед началом уменьшения ключа. Теперь 1 монету потратим на перенос в корневой список и релаксацию минимума, еще 1 - на то, чтобы положить монету у новой вершины в корневом списке. У нас осталось 2 монеты. Далее производим каскадное вырезание: в случае, когда <tex> mark[p[x]] == false </tex>, кладем 2 монеты к этой вершине, и устанавливаем соответствующую пометку. Инвариант сохраняется. Иначе, <tex> mark[p[x]] == true </tex> и там лежит 2 монеты. 2 + 2 = 4, и мы можем рекурсивно продолжить данный процесс. Оценка доказана. == Удаление вершины == Удаление вершины реализуется через уменьшение ее ключа до <tex> -\infty </tex> и последующим извлечением минимума. Амортизированное время работы: <tex> O(1) + O(D[H]) = O(D[H]) </tex>. Поскольку, ранее мы показали, что <tex> D[H] = O(log|H|) = O(logN) </tex>, то соответствующие оценки доказаны. = Ссылки = * Томас Кормен, Чарльз Лейзерсон, Рональд Ривест, Клиффорд Штайн - Алгоритмы: построение и анализ. — М.: Издательский дом «Вильямс», 2005. — С. 1296. — ISBN 5-8459-0857-4* http://ru.wikipedia.org/wiki/Фибоначчиева_куча* http://www.intuit.ru/department/algorithms/dscm/7/2.html - INTUIT.ru* Визуализаторы на rain.ifmo.ru: http://rain.ifmo.ru/cat/view.php/vis/heaps
Анонимный участник

Навигация