Изменения

Перейти к: навигация, поиск
Производная Фреше
{{Определение
|definition=
Пусть <tex>V_{r}(x)</tex> {{---}}шар в <tex>X, \quad \mathcal{F} : V_r(x) \to Y </tex>. <tex>\mathcal{F}</tex> {{---}} '''дифференцируема''' в точке <tex>x</tex>, если существует зависящий от <tex> x </tex> ограниченный линейный оператор <tex>\mathcal{A} : X \to Y</tex>, такой, что если <tex>\left \| \Delta x \right \| < r</tex>, <tex>(x + \Delta x ) \in V_r(x))</tex>, то:
<tex> \mathcal{F}(x + \Delta x) - \mathcal{F}(x) = \mathcal{A}(\Delta x) + \alpha(\Delta x) \left \| \Delta x \right \| </tex>,
}}
При <tex> X = Y = \mathcalmathbb{R} </tex> получаем определение дифференциала и производной функции одной переменной.
Установим теорему, обобщающую классическое правило дифференцирования сложной функции :
152
правки

Навигация