689
правок
Изменения
м
Нет описания правки
<tex> = \| \alpha \Delta x_n + \Delta \alpha_n x + \Delta \alpha_n \Delta x_n \| \le \| \alpha \Delta x_n \| + \| \Delta \alpha_n x \| + \| \Delta \alpha_n \Delta x_n \| \rightarrow 0</tex>.
3) <tex>\|x_n\| = \|x + (x_n - x)\| \le \|x\| + \|x_n - x\| \Rightarrow \|x_n\| - \|x\| \le \|x_n - x\| </tex>
Аналогично, <tex> \|x\| - \|x_n\| \le \|x_n - x\| </tex>.
Значит, <tex> \left|\|x_n\| - \|x\|\right| \le \|x_n - x\| </tex>, при <tex> \|x_n - x\| \rightarrow 0 \quad \left|\|x_n\| - \|x\|\right| \rightarrow 0</tex>, что и требовалось доказать.
}}