Классические теоремы дифференциального исчисления
Теорема Ферма о значении производной в экстремальной точке
Определение: |
Точки минимума и максимума:
|
Сами значения называются соответственно локальным минимумом и локальным максимумом.
Теорема (Ферма): |
Пусть существует и дифференцируема в , и — точка локального экстремума. Тогда |
Доказательство: |
Рассмотрим случай, когда — точка локального минимума. Случай с локальным максимумом доказывается аналогично.; рассмотрим . Заметим, что, по определению локального минимума, .Возможны 2 случая для : |
Замечание: обратная теорема не всегда верна, например,
но — не экстремум.
Определение: |
Корень уравнения | называется стационарной точкой.
Теорема Ролля о нулях производной
Теорема (Ролль): |
Пусть непрерывна на , дифференцируема на и . Тогда существует точка , такая, что . |
Доказательство: |
непрерывна на , значит, у нее на этом отрезке существуют минимум и максимум. Пусть — точка минимума, — точка максимума. Рассмотрим 2 случая: 1) Обе точки граничные, то есть 2) Хотя бы одна из точек находятся на концах отрезка. Тогда, так как , то . Значит, на — константа, то есть не граничная. Пусть это, например, . Тогда по теореме Ферма . |
Замечание: для непрерывной функции на заданном отрезке ей принимаются все значения между двумя граничными значениями. Такое же свойство выполняется и для ее производной, хотя она может быть уже разрывной.
Теорема Дарбу о промежуточных значениях производной
Теорема (Дарбу): |
Пусть дифференцируема на . Тогда |
Доказательство: |
Для определенности считаем, что , обратный случай доказывается аналогично.Рассмотрим вспомогательную функцию . По определению производной, При Аналогично рассмотрим : приФункция Пусть оно достигается в точке — дифференцируема, а значит, также и непрерывна на , поэтому на этом отрезке существуют минимальное и максимальное значения функции. Из двух предыдущих неравенств следует, что минимальное значение достигается не в граничной точке. , тогда по теореме Ферма в этой точке . Значит, . |
Формула конечных приращений Лагранжа
Теорема (Лагранж): |
Пусть непрерывна на и дифференцируема на . Тогда |
Доказательство: |
Рассмотрим вспомогательную функцию .Заметим, что Но , значит, по теореме Ролля, . , значит, |
Формула конечных приращений Коши
Теорема (Коши): |
Пусть непрерывны на и дифференцируемы на , . Тогда . |
Доказательство: |
Для начала, докажем, что дробь в левой части равенства определена: по теореме Лагранжа, для некоторого , по условию, правая часть не равна нулю, значит, .Рассмотрим вспомогательную функцию ., значит, по теореме Ролля, . Но , значит
|
Замечание: при
получаем частный случай формулы Коши — формулу Лагранжа.Правило Лопиталя раскрытия неопределенностей
Из формулы Коши можно получить раскрытие неопределенностей вида
, (в числителе и знаменателе дроби получаются нулевые или бесконечные значения). Это правило называют правилом Лопиталя:Теорема (правило Лопиталя): |
Если при , то |
Доказательство: |
Доопределим по непрерывности значения функций в точке : .По формуле Коши для малого отрезка выполняется равенство .Подставляя туда , получаем требуемое равенство.Случай с неопределенностью вида Пусть, для начала, предел отношения производных конечен и равен O(1). Запишем это условие: . Тогда, при стремлении к справа, это отношение можно записать как , где —
Зафиксируем теорему Коши ко всем из отрезка : из отрезка и применим
Для , достаточно близких к , выражение имеет смысл; предел первого множителя правой части равен единице (так как и — константы, а и стремятся к бесконечности). Значит, этот множитель равен , где — бесконечно малая функция при стремлении к справа. Выпишем определение этого факта, используя то же значение , что и в определении для :
Получили, что отношение функций представимо в виде , и . По любому данному можно найти такое , чтобы модуль разности отношения функций и был меньше , значит, предел отношения функций действительно равен .Если же предел бесконечен (допустим, он равен плюс бесконечности), то
|