Изменения

Перейти к: навигация, поиск

Аксиоматизация матроида циклами

54 байта убрано, 20:03, 27 июня 2011
Нет описания правки
Аксиоматизация матроида циклами
|statement=
Пусть <tex>\mathfrak C</tex> {{---}} семейство подмножеств конечного непустого множетва <tex>\mathbb E</tex> такое, что:
# <tex>\varnothing \notin \mathfrak C</tex>
# Если <tex>\mathbb C_1, \mathbb C_2 \in \mathfrak C</tex> и <tex>\mathbb C_1 \ne \mathbb C_2</tex>, то <tex>\mathbb C_1 \nsubseteq \mathbb C_2</tex> и <tex>\mathbb C_2 \nsubseteq \mathbb C_1</tex>.# Если <tex>\mathbb C_1, \mathbb C_2 \in \mathfrak C, \mathbb C_1 \ne \mathbb C_2</tex> и <tex>p \in \mathbb C_1 \cap \mathbb C_2</tex>, то существует <tex>\mathbb C \in \mathfrak C</tex> такой, что <tex>\mathbb C \subseteq (\mathbb C_1 \cup \mathbb C_2) \setminus p</tex>.Тогда семейство <tex>\mathfrak C</tex> совпадает с [[Теорема о циклах|семейством циклов]] однозначно определенного [[Определение матроида|матроида]] на <tex>\mathbb E</tex>.
|proof=
Пусть семейство <tex>\mathfrak C</tex> удовлетворяет условию теоремы. Множество <tex>\mathbb I \nsubseteq \mathbb E</tex> назовем <tex>\mathfrak C</tex>-независимым, если оно не содержит ни одного из множеств <tex>\mathbb C \in \mathfrak C</tex>. Через <tex>\mathfrak I</tex> обозначим семейство всех <tex>\mathfrak C</teX>-независимых множеств, подмножеств <tex>\mathbb E</tex>. Проверим, что семейство <tex>\mathfrak I</tex> удовлетворяет [[Определение матроида|аксиомам из определения матроида]].
Поскольку <tex>\varnothing \notin \mathfrak C</tex>, имеем <tex>\varnothing \in \mathfrak I</tex>, и первая аксиома, очевидно, выполняется.
Очевидно, что если <tex>\mathbb A \in \mathfrak I</tex> и <tex>\mathbb B \subset \mathbb A</tex> то <tex>\mathbb B \in \mathfrak I</tex>, и, следовательно, вторая аксиома выполнена.
Проверим справедливость третьей аксиомы для семейства <tex>\mathfrak I</tex>. Предположим, что существуют множества <tex>\mathbb I, \mathbb J \in \mathfrak I</tex> такие, что <tex>|\mathbb I|<|\mathbb J|</tex>, для которых третья аксиома не выполнена. Среди всех таких пар <tex>\mathbb I, \mathbb J</tex> выберем ту, у которой мощность <tex>|\mathbb I \cup \mathbb J|</tex> минимальна. Положим <tex>\mathbb J \setminus \mathbb I = \{p_1,...,p_t\}</tex>. Если <tex>t = 1</tex>, то, очевидно, <tex>\mathbb I \subset \mathbb J</tex> и аксиома выполняется. Поэтому достаточно рассмотреть <tex>t \ge 2</tex>.
В силу нашего предположения <tex>\mathbb I \cup p_i \notin \mathfrak I</tex> для любого <tex>i \in \{1,...,t\}</tex>. Следовательно, существует <tex>\mathbb C_i \in \mathfrak C</tex> такое, что <tex>\mathbb C_i \subseteq \mathbb I \cup p_i</tex> и в силу <tex>\mathfrak C</tex>-независимости множества <tex>\mathbb I</tex> имеем <tex>p_i \in \mathbb C_i</tex> для любого <tex>i \in \{1,...,t\}</tex>. Ясно, что множества <tex>\mathbb C_1,...,\mathbb C_t</tex> попарно различны.
Рассмотрим множество <tex>\mathbb C_1.</tex> Для него верно <tex>p_1 \in \mathbb C_1 \subseteq \mathbb I \cup p_1.</tex> В силу <tex>\mathfrak C</tex>-независимости <tex>\mathbb J</tex> существует <tex>q_1 \in \mathbb I \setminus \mathbb J</tex> такой, что <tex>q_1 \in \mathbb C_1.</tex> Рассмотрим теперь множество <tex>(\mathbb I \setminus q_1) \cup p_1.</tex>
Если <tex>(\mathbb I \setminus q_1) \cup p_1 \notin \mathfrak I</tex>, то существует <tex>\mathbb C' \in \mathfrak C</tex>, для которого существует такое <tex>\mathbb C'' \in \mathfrak C,</tex> что <tex>\mathbb C'' \subseteq (\mathbb C_1 \cup \mathbb C_2) \setminus p_1 \subseteq \mathbb I.</tex> Пришли к противоречию с условием <tex>\mathbb I \in \mathfrak I.</tex>
Пусть <tex>(\mathbb I \setminus q_1) \cup p_1 \in \mathfrak I</tex>. Заметим, что <tex>|((\mathbb I \setminus q_1) \cup p_1) \cup \mathbb J| < |\mathbb I \cup \mathbb J|</tex>. Поэтому в силу выбора пары <tex>\mathbb I, \mathbb J</tex> для пары <tex>(\mathbb I \setminus q_1) \cup p_1, J</tex> существует элемент <tex>p_j</tex>, где <tex>j \ge 2</tex>, такой, что <tex>(\mathbb I \setminus q_1) \cup p_1 \cup p_j \in \mathfrak I</tex>. Возьмем множество <tex>\mathbb C_j \in \mathfrak C</tex>. Для него выполняется <tex>p_j \in \mathbb C_j \subseteq \mathbb I \cup p_j.</tex> Если <tex>q_1 \notin \mathbb C_j</tex>, то <tex>\mathbb C_j \subseteq (\mathbb I \setminus q_1) \cup p_j \subseteq (\mathbb I \setminus q1) \cup p_1 \cup p_j</tex>, что невозможно. Следовательно, <tex>q_1 \in \mathbb C_j \cap C_1</tex> и <tex>\mathbb C_j \ne \mathbb C_1</tex>. Тогда по 3 пункуту теоремы, существует <tex>\mathbb C \in \mathfrak C</tex>, для которого <tex>\mathbb C \subseteq (\mathbb C_j \cup \mathbb C_1) \setminus q_1 \subseteq (\mathbb C_j \setminus q_1) \cup (\mathbb C_1 \setminus q_1) \subseteq ((\mathbb I \setminus q_1) \cup p_j) \cup ((\mathbb I \setminus q_1) \cup p_1)</tex>, которое равно <tex>(\mathbb I \setminus q_10) \cup p_1 \cup p_j \in \mathfrak I</tex>, что невозможно.
Итак, семейство <tex>\mathfrak I</tex> удовлетворяет аксиомам матроида. Следовательно, существует матроид <tex>M</tex> на множестве <tex>\mathbb E</tex>, для которого семейство <tex>\mathfrak I</tex> является семейством независимых множеств. Из определения <tex>\mathfrak C</tex>-независимости легко следует, что семейство <tex>\mathfrak C</tex> совпадает с множеством циклов матроида <tex>M</tex> Докажем есдинственность определения матроида. Пусть есть два матроида <tex>M_1 \neq M_2</tex> с носителем <tex>E</tex>, семейством циклов <tex>\mathfrak С</tex> и независимыми множествами <tex>I_1, I_2</tex> соответственно. Существует <tex>A \in I_1, A \notin I_2</tex>. Тогда для всех <tex>e \in E: (A \cup e) = С \in \mathfrak C</tex>, но <tex>\mathfrak</tex> семейство циклов <tex>M_2</tex>, следовательно для всех <tex>p \in C</tex> <tex>(С \setminus p) \in I_2</tex>, что невозможно.
}}
Анонимный участник

Навигация