689
правок
Изменения
Дауншифтинг гораздо круче, чем матан и ваши компьютерные технологии!
[[Полукольца и алгебры|<<]] [[Математический_анализ_1_курс#.D0.93.D0.BB.D0.B0.D0.B2.D0.B0_V_.D0.A0.D1.8F.D0.B4.D1.8B|>>]]
{{Определение
|definition=
Пусть <tex> (X, \mathcal R) </tex> - полукольцо. <tex> m: \mathcal R \rightarrow \overline{\mathbb R_{+}}</tex> называется '''мерой''' на нем, если:
1) <tex> m(\varnothing) = 0 </tex>
2) Для дизъюнктных <tex> A_1, A_2, \ldots, A_n, \ldots \in \mathcal R </tex> и <tex> A \in \mathcal R </tex>, такого, что <tex> A = \bigcup\limits_{n} A_n </tex>, <tex> m(A) = \sum\limits_n m(A_n) </tex> (сигма-аддитивность)
}}
Примеры мер:
* <tex> \mathcal R = 2^X, m(\varnothing) = 0, m(A) = +\infty </tex>;
* <tex> X = \mathbb N, \mathcal R = 2^X, m(X) = \sum\limits_{n=1}^{+\infty} P_k </tex> - сходящийся положительный ряд, <tex> m(\varnothing) = 0 </tex>, для <tex> A = \{i_1, i_2, \ldots, i_n\} </tex> полагаем <tex> m(A) = \sum\limits_{k \in A} P_k </tex>;
* Для полукольца ячеек примером меры является <tex> m(A) = b - a </tex>, где <tex> A = [a; b) </tex> - длина ячейки;
То, что длина ячейки является корректно определенной мерой — нетривиальный факт, который будет доказан нами позднее.
Выведем 2 важных свойства меры на полукольце:
{{Лемма
|statement=
Пусть <tex> m </tex> — мера на полукольце <tex> \mathcal R </tex>, тогда:
1) Для <tex> A \in \mathbb R </tex> и дизъюнктных <tex> A_1, A_2, \ldots, A_n, \ldots \in \mathcal R, \bigcup\limits_{n} A_n \subset A </tex> выполняется <tex> \sum\limits_{n} m(A_n) \le m(A) </tex>
2) Для <tex> A \in \mathbb R </tex> и <tex> A_1, A_2, \ldots, A_n, \ldots \in \mathcal R, A \subset \bigcup\limits_{n} A_n </tex> выполняется <tex> m(A) \le \sum\limits_{n} m(A_n) </tex> (сигма-полуаддитивность)
}}
[[Полукольца и алгебры|<<]] [[Математический_анализ_1_курс#.D0.93.D0.BB.D0.B0.D0.B2.D0.B0_V_.D0.A0.D1.8F.D0.B4.D1.8B|>>]]
[[Категория:Математический анализ 1 курс]]
{{Определение
|definition=
Пусть <tex> (X, \mathcal R) </tex> - полукольцо. <tex> m: \mathcal R \rightarrow \overline{\mathbb R_{+}}</tex> называется '''мерой''' на нем, если:
1) <tex> m(\varnothing) = 0 </tex>
2) Для дизъюнктных <tex> A_1, A_2, \ldots, A_n, \ldots \in \mathcal R </tex> и <tex> A \in \mathcal R </tex>, такого, что <tex> A = \bigcup\limits_{n} A_n </tex>, <tex> m(A) = \sum\limits_n m(A_n) </tex> (сигма-аддитивность)
}}
Примеры мер:
* <tex> \mathcal R = 2^X, m(\varnothing) = 0, m(A) = +\infty </tex>;
* <tex> X = \mathbb N, \mathcal R = 2^X, m(X) = \sum\limits_{n=1}^{+\infty} P_k </tex> - сходящийся положительный ряд, <tex> m(\varnothing) = 0 </tex>, для <tex> A = \{i_1, i_2, \ldots, i_n\} </tex> полагаем <tex> m(A) = \sum\limits_{k \in A} P_k </tex>;
* Для полукольца ячеек примером меры является <tex> m(A) = b - a </tex>, где <tex> A = [a; b) </tex> - длина ячейки;
То, что длина ячейки является корректно определенной мерой — нетривиальный факт, который будет доказан нами позднее.
Выведем 2 важных свойства меры на полукольце:
{{Лемма
|statement=
Пусть <tex> m </tex> — мера на полукольце <tex> \mathcal R </tex>, тогда:
1) Для <tex> A \in \mathbb R </tex> и дизъюнктных <tex> A_1, A_2, \ldots, A_n, \ldots \in \mathcal R, \bigcup\limits_{n} A_n \subset A </tex> выполняется <tex> \sum\limits_{n} m(A_n) \le m(A) </tex>
2) Для <tex> A \in \mathbb R </tex> и <tex> A_1, A_2, \ldots, A_n, \ldots \in \mathcal R, A \subset \bigcup\limits_{n} A_n </tex> выполняется <tex> m(A) \le \sum\limits_{n} m(A_n) </tex> (сигма-полуаддитивность)
}}
[[Полукольца и алгебры|<<]] [[Математический_анализ_1_курс#.D0.93.D0.BB.D0.B0.D0.B2.D0.B0_V_.D0.A0.D1.8F.D0.B4.D1.8B|>>]]
[[Категория:Математический анализ 1 курс]]