Изменения

Перейти к: навигация, поиск

Теорема Хватала

39 байт добавлено, 00:38, 15 октября 2011
Нет описания правки
Дан [[Основные определения теории графов|граф]] <tex> G </tex>, состоящий из <tex>\ n </tex> [[Основные определения теории графов|вершин]], <tex>\ d_i </tex> — [[Основные определения теории графов|степень]] <tex>\ i </tex> - ой вершины. <br>
Все <tex>\ d_i </tex> расположены в порядке неубывания. <br>
<tex>\ (*): </tex> <tex>\forall k</tex> верна импликация <tex>(d_k \le k < n/2 \Rightarrow d_{n-k} \ge n-k)</tex> <br>
{{Лемма
|about=
Расположим вершины в неубывающем порядке их степеней. <tex>\ d_1 \le k, d_2 \le k, ... , d_k \le k, ..., d_{k+p} \le k </tex>. Значит <tex>\ d_k \le k </tex>.
}}
<br>
{{Лемма
Пусть у нас есть <tex>\ n </tex> вершин. Из них <tex>\ k+p (p > 0)</tex> вершин имеют степень не меньше <tex>\ n-k </tex>. Расположим вершины в неубывающем порядке их степеней. Получим : <tex>\ d_n \ge n-k, d_{n-1} \ge n-k, ..., d_{n-k} \ge n-k, ... , d_{n-k-p+1} \ge n-k </tex>. Если <tex> p = 1 </tex>, то <tex> n-k-p+1 = n-k </tex>. Отсюда видно, что <tex>\ d_{n-k} \ge n-k </tex>.
}}
<br>
{{Лемма
|statement=
Пусть верно следующее:
# <tex> (*) </tex> выполнена для последовательности <tex>\ d_1, d_2, ... , d_n </tex>.
# <tex>\ d_1 \le d_1' , ... , d_n \le d_n' </tex>.
Тогда <tex>\ (*) </tex> выполнена и для <tex>\ d_1', ... , d_n' </tex>.
}}
<br>
{{Лемма
|about=
Если условие <tex>\ (*) </tex> верно для некоторой последовательности степеней, то оно верно и для мажорирующей её последовательности.
}}
<br>
{{Теорема
|about=
|statement=
Пусть <tex> G </tex> — [[Отношение связности, компоненты связности|связный граф]], количество вершин которого не меньше 3. Упорядочим степени вершин <tex>\ G </tex> по неубыванию.
Если для <tex>\forall k</tex> верна импликация <tex>(d_k \le k < n/2 \Rightarrow d_{n-k} \ge n-k) </tex> <tex> (*) </tex>, то <tex> G </tex> — [[Гамильтоновы графы|гамильтонов]].
|proof=
Приведем доказательство от противного.
Пусть теорема Хватала не верна, есть граф, где с числом вершин <tex>\ n \ge 3 </tex>, удовлетворяющий условию <tex>\ (*) </tex>, но не гамильтонов.Будем добавлять в него [[Основные определения теории графов|ребра]] до тех пор, пока не получим максимально возможный негамильтонов граф <tex> G </tex>(то есть добавление еще одного ребра сделает граф <tex> G </tex> гамильтоновым).
Добавление ребер не противоречит условию <tex>\ (*) </tex>.
Очевидно, что граф <tex>\ K_n </tex> гамильтонов для <tex>\ k \ge 3 </tex>.
Будем считать <tex> G </tex> максимальным негамильтоновым остовным подграфом графа <tex>\ K_n </tex>.
Выберем две несмежные вершины <tex> u </tex> и <tex> v </tex> графа <tex> G </tex> с условием : <tex> \deg u + \deg v </tex> — максимально.
Будем считать, что <tex>\deg u \le \deg v </tex>.
Добавив к <tex> G </tex> новое ребро <tex> e = uv </tex>, получим гамильтонов граф <tex> G + e</tex>.
Рассмотрим [[Гамильтоновы графы|гамильтонов цикл]] графа <tex> G + e</tex> : в нем обязательно присутствует ребро <tex> e </tex>. <br>
<tex>\ S \cap T = \varnothing </tex>, иначе в графе <tex> G </tex> есть гамильтонов цикл. Пусть j <tex> \in S \cap T </tex>. Тогда получим гамильтонов цикл графа <tex> G </tex> : <tex>\ u_1 - u_{j+1} - u_{j+2} - ... - u_n - u_j - u_{j-1} - ... - u_1 </tex>.
Из определений <tex>\ S </tex> и <tex>\ T </tex> следует, что <tex>\ S \cup T \subseteq \{1, 2, ..., n - 1 \} </tex> , поэтому <tex> 2\deg u \le \deg u + \deg v = |S| + |T| = |S \cup T| < n </tex>, то есть <tex>\deg u < n/2 </tex>. <br>
Так как <tex>\ S \cap T = \varnothing </tex>, ни одна вершина <tex>\ u_j </tex> не смежна с <tex>\ v = u_n </tex> (для <tex>\ j \in S </tex>). Отсюда в В силу выбора <tex> u </tex> и <tex> v </tex> имеем получим, что <tex>\deg u_j \le \deg u </tex>. Положим, что <tex>\ k = \deg u </tex>.
Тогда имеется по крайней мере <tex>\ |S| = \deg u = k </tex> вершин, степень которых не превосходит k. <br>
В силу первой леммы(I) , выполняется : <tex>\ d_k \le k < n/2 </tex>. <br>По условию Исходя из условия <tex>\ (*) </tex> , получаем : <tex>\ d_{n-k} \ge n-k </tex>. <br>В силу второй леммы(II) , имеется по крайней мере <tex>\ k+1 </tex> вершин, степень которых не меньше <tex>\ n-k </tex>. <br>Так как <tex>\ k = \deg u </tex>, то вершина <tex>\ u </tex> может быть смежна не больше, чем с <tex>\ k </tex> из этих <tex>\ k+1 </tex> вершин. Значит существует вершина <tex>\ w </tex>, не являющаяся смежной с <tex>\ u </tex> и для которой <tex>\deg w \ge n-k </tex>. Но тогда Тогда получим , что <tex>\deg u + \deg w \ge k + (n - k) = n > \deg u + \deg v </tex>, что но это противоречит выбору <tex>\ u </tex> и <tex>\ v </tex>. <br>
}}
271
правка

Навигация