90
правок
Изменения
→Формула включения-исключения
Тогда из предположения индукции имеем, что <tex> (1) = </tex> <tex> \sum \limits_{I_{n-1}} (-1)^{|I_{n-1}|+1} \bigg| \bigcap \limits_{ j \in I_{n-1} } \Big( A_j \bigcap A_n \Big) \bigg| = \sum \limits_{I_{n-1}} (-1)^{|I_{n-1}|+1} \Big| \bigcap \limits_{ j\in I_{n-1} \cup \{ n \} } A_j \Big| </tex>
Таким образом:
Значит для <tex>~l=n</tex> мы доказали, что равенство верно. Значит индукционный переход доказан, то теорема доказана.
}}