Изменения

Перейти к: навигация, поиск

Теорема Редеи-Камиона

35 байт добавлено, 08:32, 20 ноября 2011
Нет описания правки
В любом [[Отношение_связности,_компоненты_связности#.D0.A1.D0.B8.D0.BB.D1.8C.D0.BD.D0.B0.D1.8F_.D1.81.D0.B2.D1.8F.D0.B7.D0.BD.D0.BE.D1.81.D1.82.D1.8C|сильно связанном]] турнире есть [[Гамильтоновы_графы#.D0.9E.D1.81.D0.BD.D0.BE.D0.B2.D0.BD.D1.8B.D0.B5_.D0.BE.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D1.8F|гамильтонов цикл]].
|proof=
Докажем, что в любом сильно связанном турнире есть гамильтонов цикл, Приведем доказательство по индукции по длине циклачислу вершин. Пусть <tex> n </tex> - количество вершин в графе.
<u> ''База индукции:'' <br> Покажем, что в любом сильно связанном турнире <tex>T</tex> с <tex>n</tex> вершинами <tex>n \ge 3</tex> есть орцикл длины 3. Выберем произвольную вершину <tex>v_0</tex> и обозначим через <tex>W</tex> множество всех вершин <tex>w</tex>, таких, что ребро <tex>(v_0, w) \in T </tex>, а через <tex>Z</tex> – множество всех вершин <tex>z</tex>, таких, что ребро <tex>(z, v_0) \in T </tex>. Так как <tex>T</tex> сильно связан, то оба множества <tex>W</tex> и <tex>Z</tex> не пусты и найдется ребро <tex>(w', z') \in T </tex> , где <tex>w' \in W, z' \in Z</tex>. Тогда искомым циклом длины 3 будет <tex>v_0</tex>,<tex>w'</tex>,<tex>z'</tex>,<tex>v_0</texu>.
Покажем, что в любом сильно связанном турнире <tex>T</tex> с <tex>n</tex> вершинами <tex>n \ge 3</tex> есть орцикл длины 3. Выберем произвольную вершину <tex>v_0</tex> и обозначим через <tex>W</tex> множество всех вершин <tex>w</tex>, таких, что ребро <tex>(v_0, w) \in T </tex>, а через <tex>Z</tex> – множество всех вершин <tex>z</tex>, таких, что ребро <tex>(z, v_0) \in T </tex>. Так как <tex>T</tex> сильно связан, то оба множества <tex>W</tex> и <tex>Z</tex> не пусты и найдется ребро <tex>(w', z') \in T </tex> , где <tex>w' \in W, z' \in Z</tex>. Тогда искомым циклом длины 3 будет <tex>v_0</tex>,<tex>w'</tex>,<tex>z'</tex>,<tex>v_0</tex>. <u> ''Индукционный переход:'' <br/u>  Покажем, что если турнир <tex>T</tex> с <tex>n</tex> вершинами имеет орцикл <tex>S = v_1v_2...v_kv_1</tex> длины <tex>k < n</tex>, то он имеет также орцикл длины <tex>k + 1</tex>. Рассмотрим 2 случая:
# Существует такая вершина <tex>v_0 \notin S </tex> такая, что найдутся вершины <tex>u , w \in S</tex> , такие, что ребра <tex> (v_0 , u) , (w , v_0) \in T </tex>. Обозначим за <tex>v_1</tex> вершину из <tex>S</tex>, такую, что ребро <tex> ( v_1, v_0 ) \in T </tex>. Пусть <tex>v_i</tex> – первая вершина при обходе контура <tex>S</tex> из <tex>v_1</tex>, для которой ребро <tex> ( v_0, v_i ) \in T </tex>. Тогда ребро <tex>(v_{i-1}, v_0)</tex> также содержится в <tex>T</tex>. Поэтому <tex>v_1v_2...v_{i-1}v_0v_i...v_kv_1</tex> – искомый орцикл длины <tex>k+1</tex>.
# Пусть такой вершины <tex>v_0</tex> нет. Тогда разобьем вершины, не принадлежащие <tex>S</tex>, на два непересекающихся подмножества <tex>W</tex> и <tex>Z</tex>, где <tex>W</tex> - множество таких вершин <tex>w</tex> , что ребро <tex>(v_i, w)</tex> для любого <tex>i</tex> содержится в <tex>T</tex>, а <tex>Z</tex> – множество таких вершин <tex>z</tex>, что ребро <tex>(z, v_i)</tex> для любого <tex>i</tex> содержится в <tex>T</tex>. Так как <tex>T</tex> сильно связан, то оба множества <tex>W</tex> и <tex>Z</tex> не пусты и найдется ребро <tex> (w', z') \in T </tex> , где <tex>w' \in W , z' \in Z</tex>. Тогда <tex>v_1 w' z' v_3...v_k v_1</tex> – требуемый орцикл.
}}
'''{{Лемма|about=Следствие'''<br>|statement=
Турнир является сильно связанным тогда и только тогда, когда он имеет гамильтонов цикл.
}}
== Литература ==
272
правки

Навигация