Изменения
→Алгоритм
<tex>\Leftarrow</tex>
#Удалим <tex>u</tex> из <tex>G</tex>. Докажем, что <tex>\nexists</tex> не существует пути из <tex>v</tex> в любого предка вершины <tex>u</tex>. Пусть это не так. Тогда <tex>\exists x \in T</tex> - предок <tex>u</tex> : <tex>\exists</tex> путь из <tex>v</tex> в <tex>x</tex> в <tex>G \backslash u</tex>. Пусть <tex>w</tex> - предпоследняя вершина на этом пути, <tex>w</tex> - потомок <tex>v</tex>. <tex>(w, x)</tex> - не ребро дерева <tex>T</tex>(в силу единственности пути в дереве) <tex>\Rightarrow (w, x)</tex> - обратное ребро, что противоречит условию.
#Пусть у <tex>root</tex> хотя бы два сына. Тогда при удалении <tex>root</tex> не существует пути между его поддеревьями, так как не существует перекрестных ребер <tex>\Rightarrow root</tex> - точка сочленения.
<tex>\Rightarrow</tex>