Изменения

Перейти к: навигация, поиск

Эргодическая марковская цепь

2456 байт убрано, 05:38, 28 декабря 2011
Нет описания правки
:<tex>\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j, \quad \forall i=1,2, \ldots</tex>.
}}
 
Марковскую цепь обладающую следующими свойствами называют '''слабо эргодическиой''', если она обладает следующими свойствами:
# Для любых двух различных вершин графа переходов <tex>i,j \, (i\neq j)</tex> найдется такая вершина <tex>k</tex> графа («общий сток»), что существуют ориентированные пути от вершины <tex>i</tex> к вершине <tex>k</tex> и от вершины <tex>j</tex> к вершине <tex>k</tex>. ''Замечание'': возможен случай <tex>k=i</tex> или <tex>k=j</tex>; в этом случае тривиальный (пустой) путь от <tex>i</tex> к <tex>i</tex> или от <tex>j</tex> к <tex>j</tex> также считается ориентированным путем.
# Нулевое собственное число матрицы интенсивности невырождено.
# При <tex>t \to \infty</tex> матрица переходных вероятностей стремится к матрице, у которой все строки совпадают (и совпадают, очевидно, с равновесным распределением).
 
[[Файл:MarkovTriangle.png|thumb|350px|Примеры графов переходов для цепей Маркова:
|statement=
Пусть <tex>\{X_n\}_{n \ge 0}</tex> - цепь Маркова с дискретным пространством состояний и матрицей переходных вероятностей <tex>P = (p_{ij}),\; i,j=1,2,\ldots</tex>. Тогда эта цепь является эргодической тогда и только тогда, когда она
# Неразложима (т.е. цепь Маркова такова, что её состояния образуют лишь один неразложимый класс <texref>^{Свойство сообщаемости порождает на пространстве состояний [4[Отношение эквивалентности|отношение эквивалентности]]}. Порождаемые классы эквивалентности называются '''неразложимыми классами'''.</texref>);# Положительно возвратна <tex>^{[5]}</tex>;# Апериодична <tex>^{[6]}</tex>.
Эргодическое распределение <tex>\mathbf{\pi}</tex> тогда является единственным решением системы:
:<tex>\sum\limits_{i=0}^{\infty} \pi_i = 1,\; \pi_j \ge 0,\; \pi_j = \sum\limits_{i=0}^{\infty} \pi_i\, p_{ij},\quad \, j\in \mathbb{N}</tex>.}}
<references />
 
# Если цепь Маркова такова, что её состояния образуют лишь один неразложимый класс <tex>^{[7]}</tex>, то она называется '''неразложимой'''.
# Возвратное состояние <tex>i</tex> называется '''положительным''', если <tex> \mathbb{E}[T_i] = \sum\limits_{n=1}^{\infty} n f^{(n)}_{ii} < \infty</tex> <tex>(</tex>где <tex>f_{ii}^{(n)} = \mathbb{P}(X_n = i,\; X_k \not= i, \, k=1,\ldots, n-1 \mid X_0 = i )</tex> — вероятность, выйдя из состояния <tex>i</tex>, вернуться в него ровно за <tex>n</tex> шагов<tex>)</tex>.
# Если <tex>d(j) = 1</tex>, то состояние j называется '''апериодическим''' <tex>(d(j) = \gcd \left(n \in \mathbb{N} \mid p_{jj}^{(n)} > 0 \right)</tex>, где <tex>gcd</tex> обозначает наибольший общий делитель, называется периодом состояния <tex>j</tex>, <tex>p_{jj}^{(n)}</tex> матрица переходных вероятностей за <tex>n</tex> шагов<tex>)</tex>.
# Свойство сообщаемости порождает на пространстве состояний [[Отношение эквивалентности|отношение эквивалентности]]. Порождаемые классы эквивалентности называются '''неразложимыми классами'''.
==Ссылки==
==Литература==
Дж. Кемени, Дж. Снелл "Конечные цепи Маркова" стр.129 (- Издательство "Наука", 1970 г)- 129 c.
[[Категория: Марковские цепи]]
338
правок

Навигация