171
правка
Изменения
Нет описания правки
{{Определение
|definition=
Дана упорядоченная пара конечных последовательностей <tex>(( a_1 , \ldots , a_n ) , ( b_1 , \ldots , b_n ))</tex>, где <tex>a_i \in \Sigma ^*</tex> и <tex>b_i \in \Sigma ^*</tex> для всех <tex>i</tex>. Вопрос существования непустой последовательности индексов <tex>( i_1 , \ldots , i_k )</tex>, удовлетворяющей условию <tex>a_{i_1} \ldots a_{i_k} = b_{i_1} \ldots b_{i_k}</tex>, где <tex> 1 \leq i_j \leq n</tex> для каждого j, называется '''проблемой соответствий Поста (ПСП)'''.
}}
{{ТеоремаОпределение|definition=Проблема соответствий Поста, для которой фиксирован элемент последовательности индексов <tex>i_1 = 1</tex>, называется '''модифицированной проблемой соответствий Поста (МПСП)'''.}} {{Утверждение
|statement=
Язык имеющих пар последовательностей, для которых решение проблем соответствий поста ПСП положительно, перечислим, но не разрешим.
|proof=
{{Определение
Возникающее однозначное соответствие может быть решением этой системы и решением исходной задачи, в которой всё начиналось с пары <tex>(a_1, b_1)</tex>.
== Литература ==
* Джон Хопкрофт, Раджив Мотвани, Джеффри Ульман. Введение в теорию автоматов, языков и вычислений.