Изменения
→Подробное описание
Для каждой вершины <tex>v</tex> вычислим входящий и исходящий потенциал: <tex>p_{in}=\sum \limits_{u} c(u, v)</tex> и <tex>p_{out}=\sum \limits_{u} c(u, v)</tex>. Пусть <tex>p_{in}(s)=\infty</tex> и <tex>p_{out}(t)=\infty</tex>. Определим потенциал или пропускную способность вершины в [[Определение сети, потока|сети]] <tex>p(v)=min(p_{in}(v), p_{out}(v))</tex>. Таким образом, потенциал вершины определяет максимально возможное количество потока, который может через нее проходить. Ясно, что через вершины с <tex>p(v)=0</tex> поток проходить не может. Следовательно, их можно удалить из [[Дополняющая сеть, дополняющий путь|вспомогательной сети]]. Удалим эти вершины и дуги, им инцидентные, обновив должным образом потенциалы вершин, смежных с удаленными. Если в результате появятся новые вершины с <tex>p(v)=0</tex>, удалим рекурсивно и их. В результате во вспомогательной сети останутся только вершины с <tex>p(v)\ne0</tex>.
После этого приступим к построению [[Блокирующий поток|блокирующего потока]]. Пусть вершина <tex>v</tex> принадлежит <tex>k</tex>-ому слою. Протолкнем <tex>p</tex> единиц потока из вершины <tex>u</tex>, где и <tex>p(u)=min (p(w), w \in L_k)</tex>, . Протолкнем <tex>p(v)</tex> единиц потока из вершины <tex>v</tex> в смежные с ней вершины по исходящим дугам с ненулевой остаточной пропускной способностью. Попутно будем переносить проталкиваемый поток в исходную сеть, а также корректировать потенциалы вершин, отправляющих и принимающих избыток потока. В результате, весь (в виду минимальности потенциала вершины <tex>v</tex>) проталкиваемый поток соберется в вершинах <tex>(k+1)</tex>-го слоя.
Повторим процесс отправки потока из вершин <tex>(k+1)</tex>-го слоя, содержащих избыток потока, в смежные им вершины <tex>(k+2)</tex>-го слоя. И так до тех пор, пока весь поток не соберется в последнем слое. Заметим, что в этом слое содержится только сток, ибо все остальные вершины, ранее ему принадлежащие, были удалены из сети Диница, как вершины, имеющие нулевой потенциал. Следовательно, весь поток величины <tex>p</tex>, отправленный из вершины с минимальным потенциалом полностью соберется в стоке. На втором этапе вновь, начиная с вершины <tex>v</tex>, осуществляется подвод потока уже по входящим дугам. В результате на первом шаге недостаток потока переадресуется к узлам <tex>(k-1)</tex>-го слоя, затем <tex>(k-2)</tex>-го. И так до тех пор, пока весь потока величины <tex>p</tex>, отправленные из вершины с минимальным потенциалом, не соберется в истоке. Таким образом, поток и во вспомогательной и в основной сети увеличится на величину <tex>p</tex>.