Изменения

Перейти к: навигация, поиск
Доказательство корректности алгоритма
а) Обе эти вершины были достижимы из <tex>r</tex> в инвертированном графе. А это означает взаимную достижимость вершин <tex>s</tex> и <tex>r</tex> и взаимную достижимость вершин <tex>r</tex> и <tex>t</tex>. А складывая пути мы получаем взаимную достижимость вершин <tex>s</tex> и <tex>t</tex>.
б) Хотя бы одна не достижима из <tex>r</tex> в инвертированном графе, например <tex>t</tex>. Значит и <tex>r</tex> была не достижима из <tex>t</tex> в инвертированном графе, так как её время выхода больше <tex>r</tex>- больше . Значит между этими вершинами нет пути, но последнего быть не может, потому что <tex>t</tex> была достижима из <tex>r</tex> по пункту 1).
Значит, из случая а) и не существования случая б) получаем, что вершины <tex>s</tex> и <tex>t</tex> взаимно достижимы в обоих графах.
148
правок

Навигация