Изменения
Нет описания правки
[[Правильные скобочные последовательности | Расстановок скобок]] достаточно много и их количество очень быстро растет. Точное количество всевозможных вариантов равно ''n''–ому [http://ru.wikipedia.org/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%B0_%D0%9A%D0%B0%D1%82%D0%B0%D0%BB%D0%B0%D0%BD%D0%B0 числу Каталана].
Однако, порядок в котором мы расставим расставляются скобки между матрицами повлияет на количество арифметических операций, которые потребуются на вычисление ответа, или, другими словами, на ''эффективность''.
Например, предположим, что А = (10 × 30), B = (30 × 5), C = (5 × 60). Тогда:
=== Перебор всех вариантов ===
В данной задаче мы хотим нужно узнать минимальное количество операций (или минимальную стоимость), необходимых для перемножения матриц. Если мы перемножаем перемножить только две матрицы, то мы можем осуществить это едиственным способом, следовательно минимальная стоимость — это стоимость перемножения этих двух матриц. В общем, мы можем можно найти минимальную стоимость используя следующий рекурсивный алгоритм:
* Взять последовательность матриц и разделить её на две части.
* Сделать это для каждой возможной позиции в последовательности, в которой она может быть разделена и взять минимум среди всех результатов.
Или другими словами, давайте обозначим через <tex>f(i, j)</tex> минимальное количество скалярных умножений для вычисления матрицы <tex>M_{i..j}</tex>, то мы получаем следующее рекуррентное соотношение:
<tex> f(i,j) = \left \{
\begin{array}{ll}
Чтобы привести пример, давайте вернемся к нашим матрицам. Если у нас есть четыре матрицы ''ABCD'', то мы посчитаем для (''A'')(''BCD''), (''AB'')(''CD''), и (''ABC'')(''D''), делая рекурсивные вызовы на отрезках ''ABC'', ''AB'', ''CD'', и ''BCD'', чтобы найти минимальную стоимость. Потом среди них мы выбираем лучший вариант. Так же, этот алгоритм дает не только минимальную стоимость, но и показывает наилучший способ перемножения матриц: нужно только сгрупировать тем же образом матрицы, каким дается нам минимальная стоимость.
Однако, если мы применим применить этот алгоритм, то мы обнаружим, что он работает также медленно, как и наивный способ перебирания всех скобочных последовательностей! Что пошло не так? Ответом на этот вопрос является то факт, что мы делаем Делается значительное количество ненужной работы. Например, в выше описанном алгоритме, мы делали осуществляется рекурсивный вызов, чтобы найти наилучшую стоимость для подсчета ''ABC'' и ''AB''. Но нахождение наилучшей стоимости для подсчета ''ABC'' так же требует нахождения лучшей стоимости для ''AB''. Так как рекурсия растет вглубь все больше и больше, то и число ненужных повторений увеличивается. Итоговая асимптотика, как было сказано выше, равняется ''n''–ому [http://ru.wikipedia.org/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%B0_%D0%9A%D0%B0%D1%82%D0%B0%D0%BB%D0%B0%D0%BD%D0%B0 числу Каталана], да плюс вычисление для каждой правильной скобочной последовательности ''затрат'' на перемножение (то есть <tex>O(n \cdot C_n)</tex>). <!--<tex>N</tex>-ое число Каталана равняется <tex> \frac{1}{n+1}{2 n \choose n} </tex> или асимптотически <tex> \frac{4^n}{n^{3/2}\sqrt{\pi}} </tex>.-->
=== Оптимизации динамическим программированием ===
Одно из простых решений — это ''мемоизация''. Каждый раз, когда мы считаем минимальную стоимость перемножения определенной подпоследовательности, давайте мы будем запоминать ответ. Если мы когда либо ещё раз захотим посчитать это ещё раз, то мы уже будет иметь ответ и не будем пересчитывать. Поскольку существует всего <tex>O(n^2)</tex> подотрезков, где <tex>n</tex> — это количество матриц, то память занимаемая программой будет не так велика. Можно сказать, что с помощью этого простого трюка мы уменьшили асимптотику алгоритма (перебор) с <tex>O(n \cdot C_n)</tex> до <tex>O(n^3)</tex>, что является достаточно эффективным для реальных приложений.
=== Восстановление ответа ===
С помощью вышеописанного алгоритма мы можем можно восстановить порядок, в котором нам необходимо перемножать матрицы, чтобы достичь минимального количества арифметических операций, затрачиваемых на вычисление ответа. Когда мы узнаем, как нам нужно разбить отрезок на два подотрезка, то при восстановлении ответа мы заключаем эти два подотрезка(последовательности матриц) в скобки и передаем получившийся ответ выше по рекурсии.
=== Псевдокод ===