1302
правки
Изменения
ДНФ
,Нет описания правки
<tex> f(\vec{x}) = \neg x_1 \wedge \neg x_2 \wedge ...\wedge \neg x_{n-1} \wedge \neg x_n \wedge f(0,0,...,0,0)~\vee~</tex>
<tex>\neg x_1 \wedge \neg x_2 \wedge ... \wedge \neg x_{n-1} \wedge x_n \wedge f(0,0,...,0,1) ~\vee~</tex>\\\dots \\<tex>... </tex> <tex>~\vee~ x_1 \wedge x_2 \wedge ... \wedge x_{n-1} \wedge \neg x_n \wedge f(1,1,...,1,0) ~\vee~</tex>\\ <tex>x_1 \wedge x_2 \wedge ... \wedge x_{n-1} \wedge x_n \wedge f(1,1,...,1) </tex>
Так как применение данного соотношения к каждой из переменных увеличивает количество конъюнктов в два раза, то для функции от <tex>n</tex> переменных мы имеем <tex>2^n</tex> конъюнктов. Каждый из них соответствует значению функции на одном из <tex>2^n</tex> возможных наборов значений <tex> n </tex> переменных. Если на некотором наборе <tex>f(\vec{x})=0</tex>, то весь соответствующий конъюнкт также равен нулю и из представления данной функции его можно исключить. Если же <tex> f(\vec{x})=1</tex>, то в соответствующем конъюнкте само значение функции можно опустить. В результате для произвольной функции была построена СДНФ.